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Today...

ℵ0 < ℵ1 < ℵ2 < ...

ℵ0 < 2ℵ0 < 22ℵ0 < ...

1 Mirna’s question: how do you construct an uncountable
ordinal?

2 The Continuum Hypothesis

3 Induction and Recursion on N
4 Transfinite Induction and Recursion

5 A few applications
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Reminder (1).

Two equivalence relations:

|X | = |Y |: X and Y are equinumerous; i.e., there is a
bijection between X and Y .

(X ,R) ' (Y , S): (X ,R) and (Y , S) are isomorphic as ordered
structures; i.e., there is an order-preserving bijection between
X and Y .

The cardinalities are the equivalence classes of the equivalence
relation of being equinumerous; the ordinals are the equivalence
classes of being order-isomorphic.

Note that if (X ,R) ' (Y ,S), then |X | = |Y |. The converse
doesn’t hold: |ω + 1| = |ω|, but ω + 1 6' ω. We called an ordinal κ
a cardinal if for all α < κ, we have |α| < |κ|.
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Reminder (2).

A structure (X ,R) was called a wellorder if (X ,R) is a linear order
and every nonempty subset of X has an R-least element.

Proposition. The following are equivalent for a linear order
(X ,R):

1 (X ,R) is a well-order, and

2 there is no infinite R-descending sequence, i.e., a sequence
{xi ; i ∈ N} such that for every i , we have xi+1Rxi .

Proof. “1⇒2”. If X0 := {xi ; i ∈ N} is an R-descending sequence, then X0 is a
nonempty subset of X without R-least element.

“2⇒1”. Let Z ⊆ X be a nonempty subset without R-least element. Since it is
nonempty, there is a z0 ∈ Z . Since it has no R-least element, for each z ∈ Z ,
the set Bz := {x ∈ Z ; xRz} is nonempty.

For each z , pick an element b(z) ∈ Bz . Now define by recursion zn+1 := b(zn).
The defined sequence {zn; n ∈ N} is R-descending by construction. q.e.d.
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Mirna’s question: how do you construct an uncountable
ordinal?

Hartogs’ Theorem. If X is a set, then we can construct a
well-order (Y ,R) such that |Y | 6≤ |X |.

We’ll prove the special case of X = N and thus prove that there is
an uncountable ordinal:

Consider

H := {(X ,R) ; X ⊆ N and (X ,R) is a wellorder}.

We can order H by

(X ,R) ≺ (Y ,S)

iff (X ,R) is isomorphic to a proper initial segment of (Y ,S).
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How do you construct an uncountable ordinal? (2)

H := {(X , R) ; X ⊆ N and (X , R) is a wellorder}.

(X , R) ≺ (Y , R) iff (X , R) is isomorphic to a proper initial segment of (Y , S).

1 (H,≺) is a linear order.

2 (H,≺) is a wellorder.

3 H is closed under initial segments: if (X ,R) ∈ H and
(Y ,R�Y ) is an initial segment of (X ,R), then (Y ,R�Y ) ∈ H.
So in particular, if α is the order type of some element of H,
then the order type of (H,≺) must be at least α.

4 If α is the order type of some element of H, then α + 1 is.

Claim. H cannot be countable.

In fact, we have constructed a wellorder of order type ω1.
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The continuum hypothesis

ℵ1 is the least cardinal greater than ℵ0.

c is the cardinality of the real line R.

It is not obvious at all that there is any relation between ℵ1

and c, as we do not know whether there is a cardinal that is
equinumerous to R (see the Thursday lecture).

If we assume that c is a cardinal and not just a cardinality,
then we know that c ≥ ℵ1 since cardinals are linearly ordered.

Cantor conjectured (in 1877) that in fact c = ℵ1. This
statement is called the Continuum Hypothesis (CH).

CH was the first problem on the famous Hilbert list (1900).

In 1938, Kurt Gödel proved that there is a model of set theory
in which CH holds.

In 1963, Paul Cohen proved that you cannot prove CH. In
fact, for any n ≥ 1, the statement c = ℵn is consistent. With
a few exceptions (e.g., ℵω), c can be any ℵα.
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Induction on the natural numbers (1).

The induction principle (IP).

Suppose X ⊆ N. If

0 ∈ X , and

n ∈ X implies n + 1 ∈ X ,

then X = N.

Example. The proof of “There are countably many polynomials
with integer coefficients”:

P = P1 ∪ P2 ∪ P3 ∪ ...

If we can show that each Pi is countable, then P is countable as a
countable union of countable sets.

Define
X := {n ; Pn+1 is countable}
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Induction on the natural numbers (2).

X := {n ; Pn+1 is countable}

0 ∈ X . An element of P1 is of the form ax + b for a, b ∈ Z,
so |P1| = Z× Z. Thus P1 is countable, and 0 ∈ X .

if n ∈ X , then n + 1 ∈ X . Suppose n ∈ X , that means that Pn+1

is countable. Take an element of Pn+2. That is of
the form

an+2x
n+2 +an+1x

n+1 +anx
n + ...+a0 = an+2x

n+2 +p

for some p ∈ Pn+1. So, |Pn+2| = |Z× Pn+1|, and
thus (because Pn+1 was countable), Pn+2 is
countable.

The induction principle now implies that X = N, and this means
that Pn is countable for all n.
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The least number principle.

The least number principle (LNP).

Every nonempty subset of N has a least element.

This means: (N, <) is a wellorder.

(Meta-)Theorem. If LNP holds, then IP holds.

Proof. Suppose that LNP holds, but IP doesn’t. So, there is some X 6= N
satisfying the conditions of IP, i.e., 0 ∈ X and “if n ∈ X , then n + 1 ∈ X .

Consider Y := N\X . Since X 6= N, this is a nonempty set. By LNP, it has a
least element, let’s call it y0.

Because 0 ∈ X , it cannot be that y0 = 0. Therefore, it must be the case that
y0 = n + 1 for some n ∈ N. In particular, n < y0. But y0 was the least element
of Y , and thus n /∈ Y , so n ∈ X .

Now we apply the induction hypothesis, and get that y0 = n + 1 ∈ X , but
that’s a contradiction to our assumption. q.e.d.
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Recursion on the natural numbers (1).

The recursion principle (RP).

Suppose that f : N→ N is a function and n0 ∈ N. Then there is a
unique function F : N→ N such that

F (0) = n0, and

F (n + 1) = f (F (n)) for any n ∈ N.

Two ways to define addition and multiplication on the natural
numbers:

1 “cardinal-theoretic”: n + m is the unique natural number k such that any set
that is the disjoint union of a set of n elements with a set of m elements has k
elements.

2 “recursive”: Fix n. Define a function addton by recursion (“Grassmann
equalities”):

addton(0) := n, and

addton(m + 1) := addton(m) + 1.

Define n + m := addton(m).
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Recursion on the natural numbers (1).

The recursion principle (RP).

Suppose that f : N→ N is a function and n0 ∈ N. Then there is a
unique function F : N→ N such that

F (0) = n0, and

F (n + 1) = f (F (n)) for any n ∈ N.

Is RP obvious?

No, since the recursion equations are not an allowed form of
definition: in the definition of the objection F , you are referring to
F itself.

Proof. We’ll prove RP from IP.

What do we have to prove? We need to give a concrete definition
of F , i.e., a formula ϕ(n,m) that holds if and only if F (n) = m.
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Recursion on the natural numbers (2).

Preliminary work:

If g : {0, ...,m} → N is a function such that

g(0) = n0, and

g(n + 1) = f (g(n)) for any n < m,

we call it a germ of length m.

1 The function g0 : {0} → N defined by g0(0) := n0 is a germ of length 0.

2 If g is a germ of length m and k < m, then g�{0, ..., k} is a germ of
length k.

3 If g is a germ of length m, then the function g∗ defined by

g∗(k) :=

{
g(k) if k ≤ m,

f (g(m)) if k = m + 1.

is a germ of length m + 1.

4 For every n ∈ N, there is a germ of length n.

5 If g , h are germs of length n, then g = h.
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Recursion on the natural numbers (3).

(RP) Suppose that f : N→ N is a function and n0 ∈ N. Then there is a unique
function F : N→ N such that

F (0) = n0, and

F (n + 1) = f (F (n)) for any n ∈ N.

What do we have to prove? We need to give a concrete definition of F , i.e., a formula
ϕ(n,m) that holds if and only if F (n) = m.

We have proved that for every n ∈ N, there is a unique germ of
length n, let’s call it gn. Here is our definition of F :

ϕ(n,m) ⇐⇒ m = f (gn(n)).
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Counting beyond infinity.

We have defined the ordinals (essentially) as wellorders, i.e., sets
that satisfy what we called the least number principle. For N, we
showed that LNP implies IP, so maybe we can prove a transfinite
induction principle?

First attempt at a transfinite induction principle.

Suppose α is an ordinal and X ⊆ α. If

0 ∈ X , and

β ∈ X implies β + 1 ∈ X ,

then X = α.

Can this be true? Let α = ω + 1 = {0, 1, 2, 3, ..., 2011, ..., ω} and
consider X = {0, 1, 2, 3, ..., 2011, ...}. Then X satisfies the two
conditions in the induction principle, but X 6= ω + 1.

So, our first attempt didn’t work.
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That’s strange...

We proved that LNP implies IP (for N) and all ordinals satisfy
LNP, so why don’t they also satisfy IP?

We need to analyse what goes wrong in our proof in the case of
ω + 1 and X :

Proof of “LNP implies IP”.

Suppose that LNP holds, but IP doesn’t. So, there is some X 6= N satisfying the
conditions of IP, i.e., 0 ∈ X and “if n ∈ X , then n + 1 ∈ X .

Consider Y := N\X . Since X 6= N, this is a nonempty set. By LNP, it has a least
element, let’s call it y0.

Because 0 ∈ X , it cannot be that y0 = 0. Therefore, it must be the case that
y0 = n + 1 for some n ∈ N. In particular, n < y0. But y0 was the least element of Y ,
and thus n /∈ Y , so n ∈ X .

Now we apply the induction hypothesis, and get that y0 = n + 1 ∈ X , but that’s a
contradiction to our assumption. q.e.d.
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Successor ordinals and limit ordinals.

We say that an ordinal α is a successor ordinal if there is some β
such that α = β + 1. If that is not the case, then α is called a
limit ordinal.

Examples.

1 = 0 + 1

17 = 16 + 1

2001 = 2010 + 1

ω + 17 = (ω + 16) + 1

But ω, ω + ω, ω + ω + ω, and also ω1, ω2 etc. do not have this
property, and thus are limit ordinals.
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Transfinite induction (1).

Transfinite induction principle.

Suppose α is an ordinal and X ⊆ α. If

0 ∈ X ,

β ∈ X implies β + 1 ∈ X , and

if λ < α is a limit ordinal and for all β < λ, we have β ∈ X ,
then λ ∈ X ,

then X = α.
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Transfinite induction (2).

Proof of TIP. Suppose α is an ordinal, i.e., wellordered, but TIP
doesn’t hold. So, there is some X 6= α satisfying the conditions of
TIP, i.e.,

0 ∈ X ,

β ∈ X implies β + 1 ∈ X , and

if λ < α is a limit ordinal and for all β < λ, we have β ∈ X ,
then λ ∈ X .

Consider Y := α\X . Since X 6= α, this is a nonempty set. By the
fact that α is wellordered, it has a least element, let’s call it y0.

The element y0 has to be either a successor or a limit ordinal. If it
is a successor, then y0 = β + 1 for some β ∈ X , but then y0 ∈ X .
If it is a limit, then all of its predecessors are in X , and thus
y0 ∈ X . This gives the desired contradiction. q.e.d.
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Transfinite recursion.

Suppose that α is an ordinal. We call a function s : β → Ord a
segment if β < α. Suppose that you have an ordinal α0, a function
f : Ord→ Ord and a function g assigning an ordinal to every
segment.

Then there is a unique function F : α→ Ord such that

1 F (0) = α0,

2 F (β + 1) = f (F (β)), if β + 1 ∈ α, and

3 F (λ) = g(F �λ) if λ ∈ α is a limit ordinal.

The proof is a homework exercise.
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Global version of transfinite recursion.

Suppose that you have an ordinal α0, a function f : Ord→ Ord
and a function g assigning an ordinal to every segment.

Then there is a unique set operation F : Ord→ Ord such that
1 F (0) = α0,
2 F (β + 1) = f (F (β)), for every β, and
3 F (λ) = g(F �λ) if λ is a limit ordinal.

First application:

ℵ0 := ω,

ℵβ+1 := the least ordinal γ such that |ℵβ | < |γ|,
ℵλ := the least ordinal γ such that |ℵβ | < |γ| for all β < λ.

i0 := ω,

iβ+1 := |2iβ |
iλ := the least ordinal γ such that |iβ | < |γ| for all β < λ.
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Ordinal arithmetic (1).

Two ways to define ordinal addition:

1 “order-theoretic”: α+ β is the unique ordinal corresponding to the wellorder of
the disjoint union of α and β where all elements of α precede all elements of β.

2 “recursive”: Fix α. Define a function addtoα by recursion:

addtoα(0) := α,

addtoα(β + 1) := addtoα(β) + 1,

addtoα(λ) := the least γ bigger than all addtoα(β) for β < λ.

Define α+ β := addtoα(β).

And based on this, ordinal multiplication:

multα(0) := 0,

multα(β + 1) := multα(β) + α,

multα(λ) := the least γ bigger than all multα(β) for β < λ.

α · β := multα(β).
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