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Summary of the first lecture:
We have discussed how to measure the infinity, in particular
measuring the size of the set o natural numbers:
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Now for something slightly different. Have you ever counted up to
1000?

1, 2, 3, . . . , 1000.

It takes more than 16 minutes but surely we can do it.
We can also imagine ourselves counting up to 1010

10
though it will

be really time-consuming.
Can we count beyond infinity? If so we need a new name:
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Having ω (sometimes denoted ω0) at hand we can continue:

0, 1, 2, . . . , 2011, . . . , ω, ω + 1, ω + 2, . . . , ω + ω, . . .

Is there any use of this?
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Pros and Cons of Hitch Hikinga

aafter Roger Waters, ex Pink Floyd

Suppose you are hitchhiking from A to B.

Pros: should be for free.

Cons: the route may be complicated,

starting from A→ B (0 stops), to

A→ S1 → B (1 stop),

A→ S1 → S2 → B (2 stops),

and so on.
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Pros and Cons of Hitch Hiking, continued

Suppose that on our way we may be offered a lift by little dwarfs in
their little cars, moving us only a tiny little bit forward:

A→ S1 → S2 → . . .→ Sn → . . .→ B.

Then we may call such a route ω. Can you imagine hitchhiking in
the ω + 1 or ω + ω style?
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All the hitchhiker’s routes

Denote the collection of all possible routes by ω1;

ω1 = {0, 1, 2, . . . , ω, ω + 1, ω + 2 . . . , ω + ω, ω + ω + 1, . . .}.

Note that 1 + ω is the same as ω but ω + 1 is different.

With every route α we can think of α + 1, so there is no
largest element of ω1.

Every route α has finitely or countably many stops.

If α is a route and X is any nonempty set of stops appearing
in α then X has the first stop.

If α1, α2, . . . is any sequence of routes then there is a route α
which is more complicated than all αn’s.

The set ω1 of all routes is uncountable.
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Now a serious stuff!

Definition

We say that a set X is linearly ordered by < if for any x , y , z ∈ X

x 6< x ;

x < y and y < z imply x < z ;

if x 6= y then x < y or y < x .

Example

The set R of reals is linearly ordered by the ‘natural’ order.
All words are linearly ordered by the lexicographic order.
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Definition

A set X is well-ordered by < if it is linearly ordered and

every nonempty subset A of X has a least element.

Example

The set N is well-ordered. Hmmmm, should be obvious. . .
The interval [0, 1] has the least element (= 0) but is not
well-ordered because its subset A = {1, 1/2, 1/3, . . . } does not
contain a least element.

Definition

Two well-ordered sets (X , <) and (Y , <) are isomorphic if there is
a bijection f : X → Y such that

x1 < x2 is equivalent to f (x1) < f (x2);

for any x1, x2 ∈ X .
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Theorem

1 If (X , <) is well-ordered and f : X → X is an increasing
function then f (x) ≥ x for every x ∈ X.

2 If (X , <) is well-ordered and f : X → X is an isomorphism
then f is the identity function.

Proof.

Suppose that f (x) ≥ x does not hold for all x ; it means that the
set

A = {x ∈ X : f (x) < x}

is nonempty. Take its minimal element x0. Then y0 = f (x0) < x0
(since x0 ∈ A), and f (y0) < f (x0) = y0 (since f is increasing). It
follows that y0 ∈ A, a contradiction with y0 < x0.
By the first part we have f (x) ≥ x for any x . We can also apply
the first part to the inverse function f −1 : X → X :
f −1(x) ≥ x so x = f (f −1(x)) ≥ f (x).
Hence f (x) = x for all x .
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If X is well-ordered and a ∈ X then the set {x ∈ X : x < a} is
called the initial segment of X given by a.

Theorem

Let (X , <) and (Y , <) be two well-ordered sets. Then either

1 X and Y are isomorphic, or

2 X is isomorphic to some initial segment of Y , or

3 Y is isomorphic to some initial segment of X .

Definition

An ordinal number is the order type of some well-ordered set.

If α is the order type of X and β is the order type of Y then

1 α = β,

2 α < β,

3 β < α,

in the corresponding cases.
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Example

0 is the order type of the empty set;

1 is the order type of a set consisting of one element;

ω = ω0 is the order type of {0, 1, 2, . . .};

We may as well think that ω is the set {0, 1, 2, . . .}.

Definition

ω1 is the least order type of a well-ordered uncountable set.

We have α < ω1 whenever α is an order type of a countable set.
We may think that ω1 = {0, 1, 2, . . . , ω, ω + 1, . . . , α, . . .} is the
set of all order types of countable sets.
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Ordinal and cardinal numbers

An ordinal number α is a cardinal number if for every β < α
we have |β| < |α|.
0, 1, 2, . . . are cardinal numbers.

ω is a cardinal number (denoted ℵ0).

ω + 1, ω + ω are not cardinal numbers.

ω1 is the next cardinal number denoted as ℵ1.

ω2 is the least order type of a set of cardinality > ℵ1; ℵ2 = ω2.

We can define ℵ0 < ℵ1 < ℵ2 < . . ..

Then ℵω comes. And so on . . . Do you understand?a

aIn mathematics, you don’t understand things. You just get used to them.
(John von Neumann)
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Handling the continuum

We have an exact list of cardinal numbers
ℵ0 < ℵ1 < ℵ2 < . . ..

Before we defined another list ℵ0 < 2ℵ0 < 22
ℵ0 < . . ..

We also considered c — the cardinality of R.

Let us prove that c = 2ℵ0 .
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2ℵ0 = c.

Note that 2ℵ0 (by the definition the cardinality of P(N)) is the
cardinality of the set {0, 1}N of all infinite sequences of of 0’s and
1’s.
The function f : {0, 1}N → R, where

f (x1, x2, . . .) =
∞∑
n=1

2xn
3n
,

is one-to-one. It follows that 2ℵ0 ≤ c.
Every x ∈ [0, 1] has a unique infinite binary expansion

x = (0, x1x2 . . .)(2).

This shows that [0, 1] admits one-to-one function into {0, 1}N, and
c = |[0, 1]| ≤ 2ℵ0 . Finally c = 2ℵ0 by the Cantor-Bernstein theorem.
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