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Summary of the first lecture:
We have discussed how to measure the infinity, in particular
measuring the size of the set o natural numbers:
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Now for something slightly different. Have you ever counted up to
10007
1,2,3,...,1000.

It takes more than 16 minutes but surely we can do it.

We can also imagine ourselves counting up to 1010% though it will
be really time-consuming.

Can we count beyond infinity? If so we need a new name:
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Having w (sometimes denoted wp) at hand we can continue:

0,1,2,...,2011, ..., w,w+L,w+2,...,w+w, ...

Is there any use of this?
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Pros and Cons of Hitch Hiking?

Suppose you are hitchhiking from A to B.
Pros: should be for free.

Cons: the route may be complicated,

A — 51 — B (1 stop),
A— 51 — S» — B (2 stops),

and so on.

(*]
(*]
]
@ starting from A — B (0 stops), to
]
(*]
*]
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Pros and Cons of Hitch Hiking, continued

Suppose that on our way we may be offered a lift by little dwarfs in
their little cars, moving us only a tiny little bit forward:

A—-S5—-S—...—»5 —...— B.

Then we may call such a route w. Can you imagine hitchhiking in
the w 4+ 1 or w + w style?
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All the hitchhiker's routes

Denote the collection of all possible routes by wy;

w1 ={0,1,2,...,w,w+lw+2...,wtw,w+w+1,...}.

@ Note that 1 + w is the same as w but w + 1 is different.

o With every route o we can think of a + 1, so there is no
largest element of wj.

@ Every route « has finitely or countably many stops.

@ If v is a route and X is any nonempty set of stops appearing
in « then X has the first stop.

@ If a1, an, ... is any sequence of routes then there is a route «
which is more complicated than all a,’s.

@ The set wy of all routes is uncountable.
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Now a serious stuff!

Definition

We say that a set X is linearly ordered by < if for any x,y,z € X
o x £ Xx;
@ x<yandy<zimply x < z;
@ if x=£ythen x <yory<x.

The set R of reals is linearly ordered by the ‘natural’ order.
All words are linearly ordered by the lexicographic order.
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Definition
A set X is well-ordered by < if it is linearly ordered and

@ every nonempty subset A of X has a least element.

Example

The set N is well-ordered. Hmmmm, should be obvious. . .
The interval [0, 1] has the least element (= 0) but is not
well-ordered because its subset A= {1,1/2,1/3,...} does not
contain a least element.

Definition
Two well-ordered sets (X, <) and (Y, <) are isomorphic if there is
a bijection f : X — Y such that

@ x1 < xz is equivalent to f(x1) < f(x2);

| A

for any x1,x € X.
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Q If (X, <) is well-ordered and f : X — X is an increasing
function then f(x) > x for every x € X.

Q If (X, <) is well-ordered and f : X — X is an isomorphism
then f is the identity function.

Proof.

Suppose that f(x) > x does not hold for all x; it means that the
set

A={xe X :f(x)<x}

is nonempty. Take its minimal element xo. Then yp = f(xp) < xo
(since xp € A), and f(yo) < f(x0) = yo (since f is increasing). It
follows that yp € A, a contradiction with yp < xp.

By the first part we have f(x) > x for any x. We can also apply
the first part to the inverse function f~1: X — X:

f~1(x) > x so x = f(f1(x)) > f(x).

Hence f(x) = x for all x.
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If X is well-ordered and a € X then the set {x € X : x < a} is
called the initial segment of X given by a.

Let (X, <) and (Y, <) be two well-ordered sets. Then either

Q@ X and Y are isomorphic, or
@ X is isomorphic to some initial segment of Y, or

© Y is isomorphic to some initial segment of X.

Definition
An ordinal number is the order type of some well-ordered set.

If o is the order type of X and [ is the order type of Y then
Q a=5,
Q a<p,
Q [ <aq,

in the corresponding cases.
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@ 0 is the order type of the empty set;

@ 1 is the order type of a set consisting of one element;

@ w = wp is the order type of {0,1,2,...};

We may as well think that w is the set {0,1,2,...}.

Definition
w1 is the least order type of a well-ordered uncountable set.

We have o < w1 whenever « is an order type of a countable set.
We may think that w13 ={0,1,2,...,w,w+1,...,a,...} is the
set of all order types of countable sets.
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Ordinal and cardinal numbers

@ An ordinal number « is a cardinal number if for every 8 < «
we have 3| < |a.

0,1,2,... are cardinal numbers.

w is a cardinal number (denoted Ng).

w + 1, w+ w are not cardinal numbers.

w1 is the next cardinal number denoted as Nj.

wy is the least order type of a set of cardinality > N1; Ny = wo.
We can define Ng < N1 < Ny < .. ..

®© 6 6 66 o6 o o

Then R, comes. And so on ... Do you understand??

?In mathematics, you don’t understand things. You just get used to them.
(John von Neumann)
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Handling the continuum

@ We have an exact list of cardinal numbers
Nog <Ny <Ny <.

o Before we defined another list Rg < 280 < 220 <

o We also considered ¢ — the cardinality of R.

o Let us prove that ¢ = 2%0,
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Note that 2% (by the definition the cardinality of P(N)) is the
cardinality of the set {0, 1} of all infinite sequences of of 0's and
1's.

The function f : {0, 1} — R, where

o0

2Xx
f(X17X2) . ) = Z 37,,”7
n=1
is one-to-one. It follows that 2% < ¢.
Every x € [0, 1] has a unique infinite binary expansion

X = (0,X1X2 ‘e )(2)

This shows that [0, 1] admits one-to-one function into {0,1}", and
¢ = [[0,1]| < 2. Finally ¢ = 2% by the Cantor-Bernstein theorem.
[]

V.
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