Basic set-theoretic techniques in logic Part II, Counting beyond infinity: Ordinal numbers

> Benedikt Löwe Universiteit van Amsterdam Grzegorz Plebanek Uniwersytet Wrocławski

ESSLLI, LJUBLIANA AUGUST 2011

Summary of the first lecture:

We have discussed how to measure the infinity, in particular measuring the size of the set o natural numbers:

Now for something slightly different. Have you ever counted up to 1000?

 $1, 2, 3, \ldots, 1000.$

It takes more than 16 minutes but surely we can do it. We can also imagine ourselves counting up to $10^{10^{10}}$ though it will be really time-consuming. Can we count beyond infinity? If so we need a new name:

Having ω (sometimes denoted ω_0) at hand we can continue:

 $0, 1, 2, \ldots, 2011, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega + \omega, \ldots$

Is there any use of this?

Pros and Cons of Hitch Hiking^a

åafter Roger Waters, ex Pink Floyd

- Suppose you are hitchhiking from A to B.
- Pros: should be for free.
- Cons: the route may be complicated,
- starting from $A \rightarrow B$ (0 stops), to
- $A
 ightarrow S_1
 ightarrow B$ (1 stop),
- $A
 ightarrow S_1
 ightarrow S_2
 ightarrow B$ (2 stops),
- and so on.

Pros and Cons of Hitch Hiking, continued

Suppose that on our way we may be offered a lift by little dwarfs in their little cars, moving us only a tiny little bit forward:

$$A \to S_1 \to S_2 \to \ldots \to S_n \to \ldots \to B.$$

Then we may call such a route ω . Can you imagine hitchhiking in the $\omega + 1$ or $\omega + \omega$ style?

All the hitchhiker's routes

Denote the collection of all possible routes by ω_1 ;

 $\omega_1 = \{0, 1, 2, \dots, \omega, \omega + 1, \omega + 2 \dots, \omega + \omega, \omega + \omega + 1, \dots\}.$

- Note that $1 + \omega$ is the same as ω but $\omega + 1$ is different.
- With every route α we can think of $\alpha + 1$, so there is no largest element of ω_1 .
- Every route α has finitely or countably many stops.
- If α is a route and X is any nonempty set of stops appearing in α then X has the first stop.
- If α₁, α₂,... is any sequence of routes then there is a route α which is more complicated than all α_n's.
- The set ω_1 of all routes is uncountable.

Now a serious stuff!

Definition

We say that a set X is **linearly ordered** by < if for any $x, y, z \in X$

- $x \not< x$;
- x < y and y < z imply x < z;

• if
$$x \neq y$$
 then $x < y$ or $y < x$.

Example

The set \mathbb{R} of reals is linearly ordered by the 'natural' order. All words are linearly ordered by the lexicographic order.

Definition

A set X is well-ordered by < if it is linearly ordered and

• every nonempty subset A of X has a least element.

Example

The set \mathbb{N} is well-ordered. Hmmmm, should be obvious... The interval [0,1] has the least element (=0) but is not well-ordered because its subset $A = \{1, 1/2, 1/3, ...\}$ does not contain a least element.

Definition

Two well-ordered sets (X, <) and (Y, <) are **isomorphic** if there is a bijection $f : X \to Y$ such that

• $x_1 < x_2$ is equivalent to $f(x_1) < f(x_2)$;

for any $x_1, x_2 \in X$.

Theorem

- If (X, <) is well-ordered and f : X → X is an increasing function then f(x) ≥ x for every x ∈ X.
- **2** If (X, <) is well-ordered and $f : X \to X$ is an isomorphism then f is the identity function.

Proof.

Suppose that $f(x) \ge x$ does not hold for all x; it means that the set

$$A = \{x \in X : f(x) < x\}$$

is nonempty. Take its minimal element x_0 . Then $y_0 = f(x_0) < x_0$ (since $x_0 \in A$), and $f(y_0) < f(x_0) = y_0$ (since f is increasing). It follows that $y_0 \in A$, a contradiction with $y_0 < x_0$. By the first part we have $f(x) \ge x$ for any x. We can also apply the first part to the inverse function $f^{-1} : X \to X$: $f^{-1}(x) \ge x$ so $x = f(f^{-1}(x)) \ge f(x)$. Hence f(x) = x for all x. If X is well-ordered and $a \in X$ then the set $\{x \in X : x < a\}$ is called **the initial segment** of X given by a.

Theorem

Let (X, <) and (Y, <) be two well-ordered sets. Then either

- **1** X and Y are isomorphic, or
- \bigcirc X is isomorphic to some initial segment of Y, or
- **③** Y is isomorphic to some initial segment of X.

Definition

An ordinal number is the order type of some well-ordered set.

If α is the order type of X and β is the order type of Y then

- $\ \, \mathbf{0} \ \, \alpha = \beta,$
- $\ 2 \ \alpha < \beta,$
- $\ \ \, \beta < \alpha,$

in the corresponding cases.

Example

- 0 is the order type of the empty set;
- 1 is the order type of a set consisting of one element;
- $\omega = \omega_0$ is the order type of $\{0, 1, 2, \ldots\}$;

We may as well think that ω is the set $\{0, 1, 2, \ldots\}$.

Definition

 ω_1 is the least order type of a well-ordered uncountable set.

We have $\alpha < \omega_1$ whenever α is an order type of a countable set. We may think that $\omega_1 = \{0, 1, 2, \dots, \omega, \omega + 1, \dots, \alpha, \dots\}$ is the set of all order types of countable sets.

Ordinal and cardinal numbers

- An ordinal number α is a cardinal number if for every β < α we have |β| < |α|.
- 0, 1, 2, ... are cardinal numbers.
- ω is a cardinal number (denoted \aleph_0).
- $\omega + 1$, $\omega + \omega$ are not cardinal numbers.
- ω_1 is the next cardinal number denoted as \aleph_1 .
- ω₂ is the least order type of a set of cardinality > ℵ₁; ℵ₂ = ω₂.
- We can define $\aleph_0 < \aleph_1 < \aleph_2 < \dots$
- Then \aleph_{ω} comes. **And so on ...** Do you understand?^a

^aIn mathematics, you don't understand things. You just get used to them. (John von Neumann)

Handling the continuum

- We have an exact list of cardinal numbers $\aleph_0 < \aleph_1 < \aleph_2 < \dots$
- \bullet Before we defined another list $\aleph_0 < 2^{\aleph_0} < 2^{2^{\aleph_0}} < \ldots$
- We also considered \mathfrak{c} the cardinality of \mathbb{R} .
- Let us prove that $\mathfrak{c} = 2^{\aleph_0}$.

$2^{\aleph_0} = \mathfrak{c}.$

Note that 2^{\aleph_0} (by the definition the cardinality of $P(\mathbb{N})$) is the cardinality of the set $\{0,1\}^{\mathbb{N}}$ of all infinite sequences of 0's and 1's.

The function $f: \{0,1\}^{\mathbb{N}} \to \mathbb{R}$, where

$$f(x_1,x_2,\ldots)=\sum_{n=1}^{\infty}\frac{2x_n}{3^n},$$

is one-to-one. It follows that $2^{\aleph_0} \leq \mathfrak{c}$. Every $x \in [0,1]$ has a unique **infinite** binary expansion

$$x = (0, x_1 x_2 \dots)_{(2)}.$$

This shows that [0,1] admits one-to-one function into $\{0,1\}^{\mathbb{N}}$, and $\mathfrak{c} = |[0,1]| \leq 2^{\aleph_0}$. Finally $\mathfrak{c} = 2^{\aleph_0}$ by the Cantor-Bernstein theorem.