

on Neural Network Interpretations of OT

Oren Schwartz LEGO, May 28, 2004

Credits

Melanie Soderstrom

Don Mathis

Paul Smolensky

(Brown)

(Hopkins)

(Hopkins)

Introduction

- Optimality Theory
 - A symbolic theory from subsymbolic observations
- CV Theory: a toy domain
 - Simplified syllabification (skeletal subset of phonology)
 - Representations of forms and constraints are simple
 - Known linguistic typology
 - Productivity -- unbounded combinatorial structure
- CVNet
 - A neural network implementation

Optimality Theory

- Candidates
 - Input Output structures
- Constraints
 - universal
 - violable
 - ranked
- Typology
 - re-ranking of constraints.

- Syllabification
- Candidates

```
- Input Output  /C^{1}V^{2}C^{3}C^{4} / [.C^{1}V^{2}.C^{3}Vc^{4}.]  (epenthesis)  /paed + d / [.paed.ed.]   /C^{1}V^{2}C^{3}C^{4} / [.C^{1}V^{2}c^{3}.]  (deletion)  /fish + s / [fish]
```


• CON: Constraints

PARSE - for every element in the input there is a

corresponding element in the output.

FILL_v - every nucleus in the output has a

corresponding element in the input.

FILL_C - every consonant in the output has a

corresponding element in the input.

ONSET - every syllable nucleus has a preceding onset.

NOCODA - there are no syllable Codas.

• GEN: "Inviolable" Constraints

IDENTITY - each correspondence index may label at

most one pairing

LINEARITY - output segments maintain the order of

their corresponding input segments

INTEGRITY - each segment in the input corresponds to

at most one segment in the output

UNIFORMITY - each segment in the output corresponds to

at most one segment in the input.

• GEN: Structural Constraints

IDENTITY - each output segment may be an onset, nucleus, or

coda, but only one at a time.

NOGAPS - no gaps between consecutive segments of an output

string

NUCLEUS - every onset must be followed by a nucleus and

every coda must be preceded by a nucleus

CORRESPONDENCE

- no correspondence relation exists without both an

input and output segment

$$/C^{1}V^{2}C^{3}C^{4}/$$
 [. $C^{1}V^{2}.C^{3}Vc^{4}$.] (epenthesis)
/paed + d/ [.paed.ed.]

/paed + d/	NoCODA	FILLv	PARSE
$/C^1V^2C^3C^4/$			
[.C1V2.C3Vc4.]		*	
[.paed.ed.]			
[.C1V2.C3V.]		*	*!
$[.C^1V^2c^3.]$	*!		*

$$/C^{1}V^{2}C^{3}C^{4}/$$
 [.C¹V².C³Vc⁴.] (deletion)
/paed + d/ [.paed.ed.]

/paed + d/	FILLv	NoCODA	PARSE
$/C^{1}V^{2}C^{3}C^{4}/$			
$[.C^1V^2.C^3Vc^4.]$	*!		
[.paed.ed.]			
[.C1V2.C3V.]	*		*!
$[.C^1V^2c^3.]$		*	*

CV Theory: Typology

```
PARSE >> FILL<sub>C</sub> >> FILL<sub>V</sub> >> NOCODA >> ONSET
    no deletion. no epenthesis.
    /V^{1}C^{2}C^{3}V^{4} [.V<sup>1</sup>c.C^{2}V^{4}.]
           /ipso/ [.ip.so.]
PARSE >> FILL<sub>C</sub> >> NOCODA >> FILL<sub>V</sub> >> ONSET
    no deletion. epenthesize vowels to avoid codas.
    /V^{1}C^{2}C^{3}V^{4}/ [.V<sup>1</sup>.C<sup>2</sup>V.C<sup>3</sup>V<sup>4</sup>.]
          /ipso/ [.i.pu.so.]
```


CV Theory: Typology

```
FILL<sub>v</sub> >> PARSE >> ONSET >> FILL<sub>c</sub> >> NOCODA
     no vowel epenthesis.
    /C^{1}V^{2}C^{3}C^{4}/ [.C<sup>1</sup>V<sup>2</sup>.c<sup>3</sup>]
    /fish+s/ [.fish.]
FILL<sub>C</sub> >> PARSE >> ONSET >> FILL<sub>V</sub> >> NOCODA
     vowel epenthesis, but no consonant epenthesis.
    /C^{1}V^{2}C^{3}C^{4}/ [.C<sup>1</sup>V<sup>2</sup>.C<sup>3</sup>Vc<sup>4</sup>.]
     /fish+s/ [.fi.shes.]
```


CV Theory: Typology

```
PARSE >> FILL<sub>V</sub> >> NOCODA >> ONSET >> FILL<sub>C</sub>
     Codas allowed.
    /C^{1}V^{2}C^{3}/ [.C<sup>1</sup>V<sup>2</sup>c<sup>3</sup>.]
        /cat/
                       [.cat.]
PARSE >> NOCODA >> FILL<sub>V</sub> >> ONSET >> FILL<sub>C</sub>
     Codas not allowed.
     /C^{1}V^{2}C^{3}/ [.C<sup>1</sup>V<sup>2</sup>.C<sup>3</sup>V.]
        /cat/
                       [.ca.tu.]
```


CV Net

- Harmony network
 (Boltzman machine / Hopfield net)
- Localist representations
- Input units, output units, correspondence units
- No hidden units
- Each constraint is a set of (tied) symmetric weights + biases.

Ouput Units

Ouput Units

Correspondence Units

Input Units

CV Net: Constraints

• Each constraint is a set of (tied) symmetric weights + biases.

NoCODA

Ouput Units

Input Units

FILLc

Ouput Units

Input Units

CV Net: Violations & Harmony

• Harmony is a measure of the extent to which a network state obeys the (local) constraints implied by a weight matrix.

$$H_i(a) = \frac{1}{2} \sum_{\varphi,\psi=1}^{N} c_{\varphi,\psi}^i a_{\varphi} a_{\psi}$$

• The number of violations of a constraint i correspond to the negative integer value of the harmony of the network w.r.t. that constraint H_i

FILLc

Ouput Units

Input Units

NoCODA violation

Ouput Units

Input Units

NoCODA no violation

Ouput Units

Input Units

FILLv violation

Ouput Units

Input Units

CV Net: Violations & Harmony

• The network activation state that yields the (global) maximum harmony value corresponds to the optimal candidate for a given input.

CV Net: Strict Dominance

- For constraints A >> B, strict dominance implies that no matter how bad a candidate form is on B, if it is better than all other forms on A, it is optimal.
- Harmony is a real valued function.
- If the difference in harmony values across constraints is exponential, strict dominance obtains.
 - Must this be the case?

CV Net: Processing

- Processing occurs as in an ordinary Boltzman machine -- through simulated annealing.
- Updates:
 - A unit is selected at random
 - If the net input to the unit + a random variable whose range depends on the "network temperature" is positive, the unit fires. Otherwise, it does not.
- This proceeds through stages where the temperature is gradually lowered.

CV Net: Processing Problems

- Local Harmony maxima
- CON constraints are supposed to help the network choose the correct local maximum. (the global one).
- But the GEN constraints, high ranked, make it very difficult for the network to get from one GEN-respecting state to another.
- Even though the global harmony maximum is the optimal candidate, it is not necessarily easy for the network to find.
 - With these activation dynamics.

CV Net: Learning

- Boltzman Machine Learning Algorithm.
 - Calculate the network's best guess for a clamped input.
 - Compare to the correct output for a clamped input.
 - Adjust connection strengths to make the correct output more likely.
- Boltzman Machine Learning Algorithm w.r.t. Constraints (as sets of tied weights) as opposed to individual weights.
 - Corresponds to symbolic constraint demotion.
 - If the expected values of activations can be approximated.

Thank you

