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Confusion about what strict finitism is
� Both historical roots
� As what its meaning is

Different names:
� Strict finitism
� Ultrafinitism
� Ultra-intuitionism

Aim: to clarify matters (a bit)



The “founding father” (usually mentioned 
as such)

Alexander Yessenin-Volpin (sometimes 
Essenine-Volpin of Ésenine-Volpine)

• ultra-intuitionism 
• articles quite cryptic
• no direct interest in finitism 
• different aim (finitary consistency proof)



YESSENIN-VOLPIN, A. S. : "Le programme ultra-
intuitioniste des fondements des 
mathématiques". In: Infinitistic Methods, 
Proceedings Symposium on Foundations of 
Mathematics, Pergamon Press, Oxford, 1961, 
pp. 201-223. 

YESSENIN-VOLPIN, A. S. : "The ultra-intuitionistic 
criticism and the antitraditional program for 
foundations of mathematics". In: KINO, MYHILL 
& VESLEY (eds.), Intuitionism & proof theory. 
North-Holland, Amsterdam, 1970, pp. 3-45.

YESSENIN-VOLPIN, A. S. : "About infinity, 
finiteness and finitization". In RICHMAN, F. 
(ed.), 1981, pp. 274-313. 



“Zenonian” sets Z:

• if n belongs to Z, so does n+1
• Z is nevertheless finite in its entirety

example: the collection of heartbeats in your 
youth

But see: James R. Geiser: “A Formalization of 
Essenin-Volpin's Proof Theoretical Studies by 
Means of Nonstandard Analysis” (JSL, Vol. 39, 
No. 1, 1974, pp. 81-87)

for an attempt at rigorous reconstruction



“Take, for example, the unusual answer proposed by 
Alexander Yessenin-Volpin (Aleksandr Esenin-Volpin), a 
Russian logician of the ultra-finitist school who was 
imprisoned in a mental institution in Soviet Russia. 
Yessenin-Volpin was once asked how far one can take 
the geometric series of powers of 2, say (21, 22, 23, …, 
2100). He replied that the question “should be made more 
specific.” He was then asked if he considered 21 to be 
“real,” and he immediately answered yes. He was then 
asked if 22 was “real.” Again he replied yes, but with a 
barely perceptible delay. Then he was asked about 23, 
and yes, but with more delay. These questions continued 
until it became clear how Yessenin-Volpin was going to 
handle them. He would always answer yes, but he would 
take 2100 times as long to answer yes to 2100 than he 
would to answering to 21. YesseninVolpin had developed 
his own way of handling a paradox of infinity.”

(Graham & Kantor: Naming Infinity, 2009, 23)
(http://www.math.osu.edu/~friedman.8/pdf/Princeton532.pdf)



Ludwig Wittgenstein

Bemerkungen über die Grundlagen der Mathematik

• “feasibility” core concept
• ciritical remarks about infinity

• But was Wittgenstein a strict finitist?

• Not necessarily the best “compagnon de route”
• No worked out proposal



Various interpretations:

• Charles Kielkopf: Strict finitism. An examination 
of Ludwig Wittgenstein's remarks on the 
foundations of mathematics (1970)

• Crispin Wright: Wittgenstein on the Foundations 
of Mathematics (1980)

• Mathieu Marion: Wittgenstein, Finitism and the 
Foundations of Mathematics (1998)

• Victor Rodych: “Wittgenstein's Anti-Modal 
Finitism,” Logique et Analyse (2000)



Some fragments:

“II-58: “Ought the word 'infinite' to be avoided in 
mathematics?” Yes; where it appears to confer a meaning 
upon the calculus, instead of getting one from it.”

“V-9(e): However queer it sounds, the further expansion of 
an irrational number is a further expansion of 
mathematics.”

“V-21(e): Then is infinity not actual - can I not say: “these two 
edges of the slab meet at infinity”? Say, not: “the circle 
has this property because it passes through the two points 
at infinity ...”; but: “the properties of the circles can be 
regarded in this (extraordinary) perspective”. It is 
essentially a perspective, and a far-fetched one.”



David Van Dantzig

• 1956: “Is 10^10^10 a finite number?”
• no explicit proposal
• clearly formulated defense 

• different finite numeral systems
– natural numbers one can write down
– sums of these numbers
– products of the two sorts of numbers above
– …



Similar proposals to be found in:

Brian ROTMAN: Ad Infinitum ... The Ghost in 
Turing's Machine. Stanford University Press, 
Stanford, 1993.

� “Non-Euclidean Arithmetic”
� Not a strict finitist (direct conversation)
� No longer involved with mathematics as such

David ISLES: “What Evidence is There That 265536 

is a Natural Number?” (NDJFL, 33(4), 1992, pp. 
465-480)



However, there are precursors:

Harvard 1940-41: Alfred Tarski, W.V.O 
Quine and Rudolf Carnap discuss finitist 
mathematics

Paolo Mancosu: “Harvard 1940–1941: 
Tarski, Carnap and Quine on a finitistic 
language of mathematics for science”. 
History and Philosophy of Logic, 26(4), 
2005.



“He allows a function symbol ’ for successor and 
thus the (potential) generation of infinitely many 
terms (from 0). If the last thing is denoted by ‘k’, 
the problem is to give an interpretation for k’, k”, 
etc. He looks at three possibilities:

(a) k’ = k” = ... = k
(b) k’ = k” = ... = 0

(c) k’ = 0; k” = 0’, etc.
In the end he chooses (a) and modifies the axioms 

of arithmetic so that they are compatible with (a) 
(for instance “ if x’ = y’ then x = y ” needs to be 
dropped).”



Jan Mycielski (1989)

Both infinite and finite models:
• (s1) ~(∃n)(s(n) = 0)
• (s2) (∀n)(∀m)((s(n) = s(m) ⊃ (n = m))

• (s2)* (∀n)(∀m)((n ≠ s(n) & m ≠ s(m)) ⊃
(s(n) = s(m) ⊃ (n = m)).

(s2)* is perfectly compatible with
• (s3) (∃n)(n = s(n)) 



“Closer to home”:

Graham Priest 
• paraconsistent logic
• not a strict finitist

Jean Paul Van Bendegem

• just the finite models
• both arithmetic and geometry



Graham PRIEST: “'What Could the Least Inconsistent 
Number be?”. Logique et Analyse, 1994. 

Graham PRIEST: “Inconsistent Models of Arithmetic I: 
Finite Models”. Journal of Philosophical Logic, 1997

Graham PRIEST: “Inconsistent Models of Arithmetic II: the 
General Case”, Journal of Symbolic Logic, 2000.

Jean Paul VAN BENDEGEM: “Strict Finitism as a Viable 
Alternative in the Foundations of Mathematics”. Logique 
et Analyse, 1994.

Jean Paul VAN BENDEGEM: “Classical Arithmetic is Quite 
Unnatural”. Logic and Logical Philosophy, 2003. 

Jean Paul VAN BENDEGEM: “Finitism in Geometry”. The 
Stanford Encyclopedia of Philosophy, 2009.



Let PA be the theory of (Peano) arithmetic. The 
language of PA consists of:
• the language of first-order predicate logic in its 
standard form 
• with predicates restricted to “=“ (equality) and
• functions restricted to “S” (successor), “+”
(addition) and “.” (multiplication). “O” is the only 
constant of the language.

A model M of PA is a triple M = <N, I, vI> where 
N is the (standard) domain (of the natural 
numbers), I is an interpretation function and vI is 
a valuation function based on I, satisfying the 
following conditions:



(I1) I(O) = 0 (where 0 is the number zero in the 
domain)

(I2) I(Sx) = I(x) ⊕ 1 (where ⊕ means addition in the 
model)

(I3) I(x + y) = I(x) ⊕ I(y) 
(I4) I(x.y) = I(x) ⊗ I(y) (where ⊗ means multiplication 

in the model)

(I5) I(=) = {<n,n>n ∈ N}



(V1) vI(x = y) = 1 iff <I(x),I(y)> ∈ I(=) (or, 
equivalently, I(x) = I(y))

(V2) vI(∼A) = 1 iff vI(A) = 0

(V3) vI(A v B) = 1 iff vI(A) = 1 or vI(B) = 1

(V4) vI((∃x)A(x)) = 1 iff there is an I' that differs 
from I at most in the value of I(x) such that 
vI'(A(x)) = 1.

(alternatives are possible for (V4))

A formula A is valid (⊨cl A) iff for all models M, 
vI(A) = 1.



Consider N* = {[0], [1], [2], ..., [L, L+1, ...]}.

Unless otherwise indicated, L is considered to be 
a fixed number. Read [n] as an equivalence 
class under a (non-stipulated) equivalence 
relation, or as a partition of N in a finite set of 
parts.

Change the (classical) logic for (the predicate 
extension of) LP

This will lead to an accompanying model for any 
classical model



A few words on LP (Logic of Paradox) 

Developed by F. G. Asenjo and Graham Priest
Semantically two changes are made:

• Instead of {0, 1}, use the set of truth-values 
{{0}, {1}, {0,1}}

• Split the semantical conditions in two:
Instead of  v(~ A) = 1 iff v(A) = 0
Write 1 ∈ v(~ A) iff 0 ∈ v(A)

0 ∈ v(~ A) iff 1 ∈ v(A)



Given N* = {[0], [1], [2], ..., [L, L+1, ...]}

(I1*) I*(O) = [0]
(I2*) I*(Sx) = [I(Sx)]
(I3*) I*(x + y) = [I(x) ⊕ I(y)]
(I4*) I*(x.y) = [I(x) ⊗ I(y)]

Given any interpretation function I and any predicate P, 
the positive and negative extension, resp. I+(P) en I-(P) 
can be defined

(I5*) <I*(x), I*(y)> ∈ I*+(=) iff there is a n ∈ [I(x)], 
and there is a m ∈ [I(y)], such that 

<n, m> ∈ I+(=)
<I*(x), I*(y)> ∈ I*-(=) iff there is a n ∈ [I(x)], 
and there is a m ∈ [I(y)], such that 

<n, m> ∈ I-(=)



(V1*) 1 ∈ v*I*(x = y) iff <I*(x),I*(y)> ∈ I*+(=)
0 ∈ v*I*(x = y) iff <I*(x),I*(y)> ∈ I*-(=)

(V2*) 1 ∈ v*I*(∼A) iff 0 ∈ v*I*(A)
0 ∈ v*I*(∼A) iff 1 ∈ v*I*(A)

(V3*) 1 ∈ v*I*(A v B) iff 1 ∈ v*I*(A) or 1 ∈ v*I*(B)
0 ∈ v*I*(A v B) iff 0 ∈ v*I*(A) and 0 ∈ v*I*(B)

(V4*) 1 ∈ v*I*((∃x)A(x)) iff there is an I*' that differs from 
I* at most in the value of I*(x) such that 

1 ∈ v*I*'(A(x)).
0 ∈ v*I*((∃x)A(x)) iff for all I*' that differ from I* at 
most in the value of I*(x), 0 ∈ v*I*'(A(x)).

A formula A is r*-valid (⊨r* A) iff 1 ∈ v*I*(A) for all models M*. 



Lemma: For any formula A, for any classical 
model M and its derived model M*, we have:

(a) If vI(A) = 1, then 1 ∈ v*I*(A),
(b) If vI(A) = 0, then 0 ∈ v*I*(A).

Theorem: if ⊨cl B then ⊨r* B.

Example: (∃x)(x > L)
True if x in [L, L+1, ...] is, e.g., L+1
False if x in [L, L+1, ...] is, e.g., L itself

Thus: v*I*((∃x)(x > L)) = {0,1}

Leads to the idea of a more general scheme



(i) Take any first-order theory T with a finite number of 
predicates. Let M be a model of T.

(ii) Reformulate T in a paraconsistent fashion, extending the 
truth values to {{0}, {0,1}, {1}} instead of {0,1}.

(iii) If the models of M are infinite, define an equivalence 
relation R over the domain D of M, such that D/R is finite. 
(Or, equivalently, define a partition in a finite set of parts of the 
domain D of M. Let the resulting model be M/R or M*.)

(iv) The model M/R or M* is a finite paraconsistent model of 
the given first-order theory T such that validity is extended

Thus M/R is a strict and rich finitist extension of M.



Possible extensions

Z* = {[..., -(L+1), -L], ..., [-2], [-1], [0], [1], [2], ..., 
[L, L+1, ...]}

Q* = 
(a) QL = [x │ x ∈ Q & x ≥ L], Q-L = [x │ x ∈ Q & x ≤ -L]
(b) Qd = { [p/q] │ p/q ∈ Q & -L < p,q < L & q ≠ 0}
(c) Qind = { ]x, y[ │ x, y ∈ Q & (x, y ∈ Qd or x = -L or 

y = L) & ~(Ez)(x < z < y & z ∈ Qd)}.

Nice consequence: v*I*(7 x 1/7) = {1}



Slightly growing interest in strict finitism:

Manuel BREMER: “Varieties of Finitism.”
Metaphysica, 2007.

Jim MAWBY: Strict Finitism as a Foundation of 
Mathematics. Glasgow: Ph.D., 2005.

Avril STYRMAN: Finitist Critique on Transfinity: An 
Investigation of Infinity, Collection Theory and 
Continuum. Helsinki: Master thesis, 2009.

Feng YE: Strict Finitism and the Logic of 
Mathematical Applications, New York: Springer, 
2011.



All that preceeded is the “core” of strict finitism.

There is a “belt” around this core that contains 
heaps of material (but not always useful):

1. Classical mathematical theories extended with a 
“feasibility” operator

Examples: 
For arithmetic: Rohit Parikh: “Existence and 

Feasibility in Arithmetic”. Journal of Symbolic 
Logic, 1971. 

For set theory: Shaughan Lavine: Understanding 
the Infinite. Harvard UP, 1994. 



2. Weak subsystems of arithmetic

Examples:

Presburger arithmetic: only successor and addition.
M. PRESBURGER: “Über die Vollständigkeit eines 

gewissen Systems der Arithmetik ganzer Zahlen, in 
welchem die Addition als einzige Operation hervortritt." 
Warschau: Comptes Rendus du I congrés de 
Mathématiciens des Pays Slaves, 1929.

Robinson arithmetic (or the system Q): axiom of induction 
weakened or left out

Edward NELSON: Predicative Arithmetic. Princeton UP, 
1986.



3a. Geometry

J. T. Hjelmslev. Die Natürliche Geometrie, Hamburg: 
Gremmer & Kröger, 1923.

G. Järnefelt: “Reflections on a Finite Approximation to 
Euclidean Geometry: Physical and Astronomical 
Prospects”,  Annales Academiae Scientiarum Fennicae, 
96, 1951.

P. Kustaanheimo: “A Note on a Finite Approximation of the 
Euclidean Plane Geometry”. Societas Scientiarum 
Fennica, 1951.

Based on the idea of a finite field to replace the field of real
numbers.



3b. Geometry with physical inspiration

L. Silberstein. Discrete Spacetime. A Course of Five 
Lectures delivered in the McLennan Laboratory, 
Toronto: University of Toronto Press, 1936. 

E. Biser: “Discrete Real Space”, Journal of Philosophy, 
1941.

H.R. Coish: “Elementary particles in a finite world 
geometry”, Physical Review, 1959.

T. Regge: “General relativity without coordinates”. Nuovo 
Cimento, 1961.

I. Dadić & K. Pisk: “Dynamics of Discrete-Space Structure”, 
International Journal of Theoretical Physics, 1979.

M. Requardt: “Discrete Mathematics and Physics on the 
Planck-Scale”. e-print: arXiv:hep-th/9504118v1, 
1995.



Example from E. Biser (1941):

“Let us now recapitulate the conditions of 
discreteness of actual regions in order to
apply them to this abstract system. They
are as follows: (1) there are no points, (2) 
a region is divisible into a finite number of 
cells of voluminous extension, and (3) a 
cell is an irreducible quantum of extension, 
below which an entity can not be further
subdivided without losing its actuality.” (p. 
522)



Very often:

� Translation of differential equations in 
difference equations

� Classical mathematics in the background 
to prove existence results

� Focused on the physical constants
� Different from author to author
� Little or no impact



As far as history is concerned:

� Rather confused story
� Input from many and very different 

sources
� Much of the material is not known
� Remains a minority view
� Many partial proposals around
� In most cases no philosophical motivation
� Vague intuitions and ideas



There is no “poverty” involved

(a) (∀x)∼xRx
(b) (∀x)(∃y)xRy
(c) (∀x)(∀y)(∀z)((xRy & yRz) ⊃ xRz).

All models of these three sentences are 
infinite



What does the strict finitist read?
(imagine a model with 3 elements, whereof 2 labeled)

(a)* (∀x)(((x = a) v (x = b)) ⊃ ∼xRx)

(b)* (∀x)(∃y)(((x = a) v (x = b)) & (y = a) v 
(y = b)) ⊃ xRy)

(c)* (∀x)(∀y)(∀z)((((x = a) v (x = b)) & 
((y = a) v (y = b)) & ((z = a) v (z = b))) ⊃
((xRy & yRz) ⊃ xRz))

Note: model corresponds to {a, b, *} as partition of 
the infinite domain. * contains all other elements



The “accountant’s” model:

Easy to prove that
(∀x)(∀y)(xRy ⊃ ~yRx)

Pick a and b, such that aRb and suppose 
that bRa is the case, then by transitivity we 
have aRa which contradicts irreflexivity (all 
this under the assumption that we can talk 
about a and b)



Inspired by Tarski’s remark:

“Moreover, one should allow from the start 
variables in the language which range 
over all things in the world; but it remains
open how many things there are.

Instead of saying ‘prod(2, 3)=6’, he
proposes: ‘whenever x is a successor of a 
successor of 0, and y . . ., and z . . ., then
prod(x, y)=z’.”

(Mancosu, 2005, p. 351)



Compare to mathematical practice

On the one hand: proof that prime numbers
are not bounded by a finite number

On the other hand: 257,885,161 – 1 is the 
largest prime number known at the 
present

These two statements are perfectly
compatible



Les Stewart (Australia) spent 15 years from 1983 
to 1998 typing out numbers from one to one 
million in letters 

Whatever he did, it was not mathematics!


