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* The nature of mathematical reasoning
* Some historical examples

e Computational Science: Emergence of a new
reasoning style



Babylonian versus Geek styles in
Mathematics

Babylonian style

In Babylonian schools in mathematics the student would learn something by
doing a large number of examples until he caught on to the general rule. Also
he would know a large amount of geometry, a lot of the properties of circles,
the theorem of Pythagoras, formulae for the areas of cubes and triangles; in
addition, some degree of argument was available to go from one thing to
another.

Greek or Euclidean style

But Euclid discovered that there was a way in which all the theorems of
geometry could be ordered from a set of axioms that were particularly simple.
...The most modern mathematics concentrates on axioms and
demonstrations within a very definite framework of conventions of what is
acceptable and what is not acceptable as axioms.

Richard P. Feynman: The Character of Physical Law, Penguin Books 1965, p. 46



The Nature of Mathematics

... mathematics is the science of skillful operations with concepts and rules
invented just for this purpose. The principal emphasis is on the invention of
concepts. Mathematics would soon run out of interesting theorems if these
had to be formulated in terms of the concepts which already appear in the
axioms.

... the mathematician could formulate only a handful of interesting theorems
without defining concepts beyond those contained in the axioms and that the
concepts outside those contained in the axioms are defined with a view of
permitting ingenious logical operations which appeal to our aesthetic sense

both as operations and also in their results of great generality and simplicity.
(Eugene Wigner: The Unreasonable Effectiveness of Mathematics in the Natural Sciences.)



The empirical law of epistemology

... the "laws of nature" being of almost fantastic accuracy but of strictly limited
scope. | propose to refer to the observation which these examples illustrate as the
empirical law of epistemology. Together with the laws of invariance of physical
theories, it is an indispensable foundation of these theories. Without the laws of
invariance the physical theories could have been given no foundation of fact; if the
empirical law of epistemology were not correct, we would lack the encouragement
and reassurance which are emotional necessities, without which the "laws of
nature" could not have been successfully explored.

Every empirical law has the disquieting quality that one does not know its
limitations. We have seen that there are regularities in the events in the world
around us which can be formulated in terms of mathematical concepts with an
uncanny accuracy. There are, on the other hand, aspects of the world concerning
which we do not believe in the existence of any accurate regularities. We call
these initial conditions. The question which presents itself is whether the different
regularities, that is, the various laws of nature which will be discovered, will fuse
into a single consistent unit, or at least asymptotically approach such a fusion.
Alternatively, it is possible that there always will be some laws of nature which have

nothing in common with each other.
(Eugene Wigner: The Unreasonable Effectiveness of Mathematics in the Natural Sciences.) 5



V.I. Arnold's Mathematical
Mushroom

theorems

problems
conjectures
mistakes

\ ideas

When you are collecting mushrooms, you only see the mushroom itself.
But if you are a mycologist, you know that the real mushroom is in the
earth. There’s an enormous thing down there, and you just see the
fruit, the body that you eat. In mathematics, the upper part of the
mushroom corresponds to theorems that you see. But you don't see
the things which are below, namely problems, conjecture, mistakes,

ideas, and so on.

(V.1. Arnold: From Hilbert’s Superposition Problem to Dynamical Systems, Mathematical Events of the
Twentieth Century, 2006, 19-20.)



"Pure” Mathematics

It should perhaps be stressed again that the
boundaries between mathematics and the many
disciplines to which it is applied are seldom
sharply drawn. Nothing but impoverishment can
be expected from the unfortunately rather
frequent current efforts to isolate a body of ‘pure’
mathematics from the rest of scientific endeavour
and to let it feed only on itself.

(Mark Kac and Stanislaw M. Ulam: Mathmatics and Logic, Penguin Books 1968, p. 180)



Garrett Birkhoff

Progress would have been much slower if rigorous mathematics had
not been supplemented by various plausible intuitive hypotheses. Of

these, the following have been especially suggestive:

(A) Intuition suffices for determining which physical variables require
consideration.

(B) Small causes produce small effects, and infinitesimal causes
produce infinitesimal effects.

(C) Symmetric causes produce effects with the same symmetry.

(D) The flow topology can be guessed by intuition.

(E) The processes of analysis can be used freely: the functions
of rational hydrodynamics can be freely integrated, differentiated,
and expanded in series (Taylor, Fourier) or integrals (Laplace,
Fourier).

(F) Mathematical problems suggested by intuitive physical

ideas are "well set".
Garrett Birkhoff: Hydrodynamics: A Study in Logic, Fact, and Similitude. Second Edition 1960, p. 4



Practical Mathematical Reasoning

* The final mathematical proof must comply with classical (or intuitionistic)
logic

* Logical validity (consistency) is a necessary part of mathematical truth
* Proof constructions usually require introduction of new concepts

* Proof constructions are often governed by intuitively defined theorems
(hypotheses, conjectures)

 New important theorems and hypotheses are often codifications of
mathematical problems in science and engineering, or internally in math.
 Maxwell’s analysis of the centrifugal governor
* Finite element methods in PDE
* Noether’s theorem (relationship between laws and invariances)
e Category theory in algebraic topology



Theodore von Karman, Josiah
Willard Gibbs Lecture. 1939

Due to this failure of the method we do not get an answer for one of the
fundamental questions of the hydrodynamics of real fluids, that is : What
is the flow pattern of a real fluid around a submerged body in the limiting
case v — ()? As a matter of fact this problem is still not solved.
Consider, for example, two-dimensional flow around a circular cylinder.
We are not able to decide whether the flow pattern for vy — 0
approaches the potential flow of a nonviscous fluid or a stationary
flow pattern consisting of a vortex-free region and a wake with
continuously distributed vorticity, as suggested by Oseen, or a
nonstationary flow pattern with concentrated vortex columns of
alternating circulation, a flow pattern treated by the present author. It
seems that we have here an example in which the analytical methods
are not sufficient, at least at the present time, to solve a problem of

purely analytical character.
(Theodore von Karman: The engineer grapples with nonlinear problems, Bull. Am. Math. Soc., Volume 46,
Number 8 (1940), p.664)
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John von Neumann

It was through him [Robert Kent,
a senior BRL official] that | was
introduced to applied science.
Before this | was, apart from
some lesser infidelities,
essentially a pure mathematician,
or at least a very pure
theoretician. Whatever else may
have happened in the meantime,
| have certainly succeeded in
losing my purity.

William Aspray. John von Neumann and the Origins of Modern
Computing. The MIT Press, Cambridge, Massachusetts, 1990, p. 26
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Von Neumann Architecture

Memory
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Input Output

The term von Neumann architecture arose from von Neumann’s paper First
Draft of a Report on the EDVAC dated 30 June 1945, where von Neumann

gives a detailed description of the logical and technical structure of the
EDVAC computer.



The CFYN Weather Forecast

Numerical Integration of the Barotropic Vorticity Equation

By J. G. CHARNEY, R. FJORTOFT?, J. von NEUMANN

The Institute for Advanced Study, Princeton, New Jersev?

{Manuscript received 1 November 1950)

Abstract

A method 15 given for the numerical solution of the barotropic vorticity cquation
over a limited area of the carth’s surface. The lack of a natural boundary calls for an
investigation of the appropriate boundary conditions. These are determined by a
heuristic argument and are shown to be sufficient in a special case. Approximate
conditions necessary to insure the mathematical seability of the difference equation
are derived. The results of a series of four 24-hour forecasts computed from actual
data at the soo mb level are presented, together with an interpretation and analysis.
An attempt is made to determine the causes of the forecast errors. These are ascribed
partly to the use of too large a space increment and partly to the effects of baroclinicity.
The role of the latteris investigated in some detail by means of a simple baroclinic model.

a—77+\7-V77:O

ot
1 =¢ + f = absolute vorticity
¢ = vertical component of the curl of v

f =2Qsm ¢ = Coriolis parameter
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The CFvN
Grid

Fig. 1. A typical finite-difference grid used in the

computations. A strip two grid intervals in width at

the top and side borders and one grid interval in width
- at the lower border is not shown.

(J. G. Charney, R. Fjortoft, J. von Neumann: Numerical Integration of the Barotropic Vorticity Equation, Tellus, Vol. 2, No. 4, Nov. 1950,
p. 245) 14



The ENIAC Run

FUNCTION

TABLES |

ENIAC
RAT]

PUNCH-CARD

__QUTPUT_ |

[PUNCH-CARD
PERAT|

1] 23]
Coriolis parometer Time - step New hei nd P : k
: | | New height repare inpul dec
Somi faciors extropolation new vorticity ™ tor Operation 4
4
Jacobion | Vorticity
Scole foctors {vorticity advection) tendency
5] [67]
X - sines First Fourier > x-tronsform of Prepore input deck
Scale foctors tronsform {x) vorlicity tendency > for Operction 8
8 | | 9,10 |
y-sines Second Fourier | ¥1 - fronsform of Prepare inpul deck
Scale factors transform (y) vorticity lendency for Operafion 11
[ ] 2]
y - sines Third Fourier yyx-tronsform of Prepare input deck
Scole foctors transform (y) vorficity fendency for Operation 13
131 [ ]
X-sines Fourth Fourier Height Prepare input deck
| o .
Scale factors transform (x) tendency for Operation 15
Interleave ight fenden :
height and vorlicity |———m] SO tEnCeNCY g PrOvRTS lipet deck
fendencies vorticity tendency for Operation |

Fic. 6. The 16 operations in each time step of the first numerical weather forecast.
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Fig. 2. Forccast of January 5, 1949, 0300 GMT: (1) observed = and 2 at f == o; (b) observed z and
at f = 24 hours; (¢) observed (continuous lines) and computed (broken lines) 24-hour height change; (d}
computed > and » at ¢ — 24 hours. The height unit is rao ft and the unit of vorticity is 1/3 % 10~% sect.

(J. G. Charney, R. Fjortoft, J. von Neumann: Numerical Integration of the Barotropic Vorticity Equation, Tellus, Vol. 2, No. 4, Nov. 19505p.
246)



CFvN
forecast
2

(J. G. Charney, R. Fjortoft, J. von Neumann: Numerical Integration of the Barotropic Vorticity Equation, Tellus, Vol. 2, No. 4, Nov. 1950,
p. 247)



forecast
3

(J. G. Charney, R. Fjortoft, J. von Neumann: Numerical Integration of the Bar®tropic Vorticity Equation, Tellus, Vol. 2, No. 4, Nov.

1950, p. 248)
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Evaluation of Prediction 1 and 2

The forecast of January 5, in which the principal system was an intense cyclone
over the United States, was uniformly poor. The forecast gave much too small a
displacement of the cyclone and also distorted its shape, and the predictions of
the other motions were equally inaccurate. On the other hand, the January 30
forecast contained a number of good features. The displacement and
amplification of the trough over the United States at about 110° W was well
predicted, as was the large scale shifting of the wind from NW to WSW and the
increase in pressure over eastern Canada. The displacement of the axis of the
major trough over the eastern United States and Canada was correctly
predicted, but the strong circulation that developed at its southern extremity
was not. Proceeding eastwards we find that the amplification of the trough over
the North Sea together with the characteristic breakthrough of the northwesterly
winds and the corresponding destruction over France of the eastern nose of the
anticyclone was predicted approximately. This is shown by the agreement of the

predicted with the observed height changes over western Europe.

(J. G. Charney, R. Fjortoft, J. von Neumann: Numerical Integration of the Barotropic Vorticity Equation, Tellus, Vol. 2, No. 4,
Nov. 1950, p. 245-246)
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Improved Computer Power

During his Starr Lecture, George Platzman arranged with IBM to repeat one of the
ENIAC forecasts. The algorithm of CFvN was coded on an IBM 5110, a desktop
machine then called a portable computer or “PC” (having a tiny fraction of the
power of a modern PC). The program execution was completed within the hour or
so of Platzman’s lecture. This implies a 24-fold speedup over the best rate
achievable for ENIAC. The program eniac.m was run on a Sony Vaio (model VGN-
TX2XP) with MATLAB version 6. The main loop of the 24-h forecast ran in about
30 ms. One may question the precise significance of the time ratio—about three
million to one—but it certainly indicates the dramatic increase in computing

power over the past half-century.
(Peter Lynch: The ENIAC Forecast, a Re-creation, Bull. Am. Meteorological Society, January 2008)
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S.M. Ulam about Fermi

After the war, during one of his frequent summer visits to Los Alamos, Fermi became
interested in the development and potentialities of the electronic computing
machines. He held many discussions with me on the kind of future problems which
could be studied through the use- of such machines. We decided to try a selection of
problems for heuristic work where in absence of closed analytic solutions
experimental work on a computing machine would perhaps contribute to the
understanding of properties of solutions. This could be particularly fruitful for
problems involving the asymptotic-long time or "in the large" behavior of non-linear
physical systems. In addition, such experiments on computing machines would have
at least the virtue of having the postulates clearly stated. This is not always the case in
an actual physical object or model where all the assumptions are not perhaps
explicitly recognized.

Fermi expressed often a belief that future fundamental theories in physics may
involve non-linear operators and equations, and that it would be useful to attempt
practice in the mathematics needed for the understanding of non-linear systems.

22



The experiment

NV AN AN NV

.. 2 2
X, =(x,+tx_ +2x)+o [(xl.+1 —-x,) +(x,—x_,) ]

or

X =X X, +2x)+ P l:('xi+1 - ’xi)3 +0x =X )3]

The results of the calculations (performed on the old MANIAC machine) were
interesting and quite surprising to Fermi. He expressed to me the opinion that they

really constituted a little discovery in providing intimations that the prevalent beliefs

in the universality of "mixing and thermalization" in non-linear systems may not be
always justified.

23



Modal Representation

n+1

H(q,p)= Z[%(pf- +(q,-q9,) +%(q,-q,,)’

2 ¥ .(jkn\
a, = +1qus1n

n \n+1)
2 & . ( jkm)

q. = Eaksm JER
/ n+143 \n+1)

1 ¢ < kr
H(a, o)== Y (i’ +w’a)+a Y A g ®, =2sin
(a,a) 2;( k k k) j%::l k14494, k (2(72_1_1))

24



Fermi, Pasta and Ulam's
observations

Instead of a gradual, continuous flow of energy from the first mode to the higher
modes, all of the problems show an entirely different behavior. Starting in one
problem with a quadratic force and a pure sine wave as the initial position of the
string, we indeed observe initially a gradual increase of energy in the higher modes as
predicted (e.g., by Rayleigh in an infinitesimal analysis). Mode 2 starts increasing first,
followed by mode 3, and so on. Later on, however, this gradual sharing of energy
among successive modes ceases. Instead, it is one or the other mode that
predominates. For example, mode 2 decides, as it were, to increase rather rapidly at
the cost of all other modes and becomes predominant. At one time, it has more
energy than all the others put together! Then mode 3 undertakes this role. It is only
the first few modes which exchange energy among themselves and they do this in a
rather regular fashion. Finally, at a later time mode 1 comes back to within one
percent of its initial value so that the system seems to be almost periodic. All our
problems have at least this one feature in common. Instead of gradual increase of all
the higher modes, the energy is exchanged, essentially, among only a certain few. It
is, therefore, very hard to observe the rate of "thermalization" or mixing in our

problem, and this was the initial purpose of the calculation.
(E. Fermi, J. Pasta, and S. Ulam: Studies of non linear problems, Document U-1940 (may 1955), p. 981)
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Results
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Fig. 1. = The quantity plotted is the energy (kinetic plus potential in each of the first five
modes). The units for energy are arbitrary. N = 32; a = 1/4; 8#2 = 1/8. The initial form
of the string was a single sine wave. The higher modes never exceeded in energy 20 of our
units. About 30,000 computation cycles were calculated.
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| ater calculations

In 1961, on more modem and faster machines, the original problem was considered
for still longer periods of time. It was found by J. Tuck and M. Menzel that after one
continues the calculations from the first “ return" of the system to its original
condition the return is not complete. The total energy is concentrated again
essentially in the first Fourier mode, but the remaining one or two percent of the total
energy is in higher modes. If one continues the calculation, at the end of the next
great cycle the error (deviation from the original initial condition) is greater and
amounts to perhaps three percent. Continuing again one finds the deviation
increasing - after eight great cycles the deviation amounts to some eight percent; but
from that time on an opposite development takes place! After eight more i.e.,
sixteen great cycles altogether, the system gets very close - better than within one
percent to the original state! This super-cycle constitutes another surprising property
of our non-linear system.



The challenge of Numerical
Analysis

The ENIAC and similar early computers have very small memories
for intermediate results but was able to do multiplications - which
was the measure of computational complexity at that time -
extremely fast. So, as numerical analysts up to this time considered
multiplications to be slow and expensive and storage cheep, they
now lived in a world where multiplications were extreme fast but
storage very pour. A consequence of this was that it became
necessary to reexamine existing algorithms, and suddenly it became
possible to solve partial differential equations numerically.

28



Numerical Analysis

Numerical analysis is the area of mathematics and
computer science that creates, analyzes, and implements
algorithms for solving numerically the problems of
continuous mathematics. Such problems originate
generally from real-world applications of algebra,
geometry, and calculus, and they involve variables which
vary continuously. These problems occur throughout the
natural sciences, social sciences, medicine, engineering,
and business.

K. E. Atkinson. Numerical analysis. Scholarpedia, 2(8):1-2, 2007.



Numerical Analysis Since the
1940's

Beginning in the 1940's, the growth in power and
availability of digital computers has led to an increasing use
of realistic mathematical models in science, medicine,
engineering, and business; and numerical analysis of
increasing sophistication has been needed to solve these
more accurate and complex mathematical models of the
world. The formal academic area of numerical analysis
varies from highly theoretical mathematical studies to
computer science issues involving the effects of computer
hardware and software on the implementation of specific
algorithms.

K. E. Atkinson. Numerical analysis. Scholarpedia, 2(8):1-2, 2007.
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Reasoning Styles

By a scientific reasoning style we understand a comprehensive
transformation of the way in which science is being understood and
performed. The transformation covers the following elements:

1. The transformation concerns several scientific disciplines.

2. New institutions are formed that epitomize the new directions.

3. It leads to new social organizations of the scientific practice.

4. It leads to fundamental ontological and epistemological changes: New

types of objects, evidence, classifications, laws or modalities, and ways of
expressing scientific facts.



The Probabilistic Reasoning Style

The numerous statistical societies founded in the 1830s are some of

the new institutions associated with what Hacking called the probabilistic
revolution. The avalanche of numbers gave a different feel to the

world: it had become quantified and numbers and statistics ruled it.

It was Mr. Gradkin’ s world. Concomitantly, the previously dominant
determinist Weltanschauung became replaced by a view of the world

in which probability and chance played an ever increasing role. The
result was the emergence of a new statistical style, constituted by a
plethora of abstract statistical entities and governed by autonomous
statistical laws, which are ‘used not only to predict phenomena but

also to explain [them]’ .
(Sam Schweber and Matthias Wachter. Complex systems, modelling and simulation. Stud. Hist. Phil. Mod.
Phys., 31, 2000, p. 584)
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Computational Science as a New
Reasoning Style

We are witnessing another Hacking-type revolution, in
which the computer is the central element - in the same
sense that the steam engine was the central element in
the first industrial revolution and that factories driven by
steam power and steam locomotives and railroads
transformed the economic and social landscape. That the
computer has similarly generated a sweeping
transformation of the social, material, economic and
cultural context is evident - think only of the
transformation of the workplace and the novel
routinisations that the computer has introduced, of e-
commerce, of the new classes of professionals, etc.

(Sam Schweber and Matthias Wachter. Complex systems, modelling and simulation. Stud. Hist. Phil. Mod. Phys., 31,
2000, p. 585)



Computational Science

We are in the midst of a computational revolution that will change science

and society as dramatically as the agricultural and industrial revolutions did.

The discipline of computational science is significantly affecting the way we
do hard and soft science.

Supercomputers with ultrafast, interactive visualization peripherals
have come of age and provide a mode of working that is coequal with
laboratory experiments and observations and with theory and
analysis. We can now grapple with nonlinear and complexly intercoupled
phenomena in a relatively short time and provide insight for quantitative
understanding and better prediction. In the hands of enthusiastic and
mature investigators, intractable problems will recede on a quickened time

scale in this computationally synergized environment.
(Norman J. Zabusky: Physics Today, October 1987, p. 25)
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Free-air Gravity Anomalies From the
Earth Gravitational Model 2008 (EGM2008)

0° 30° 60° 90° 120° 150° 180" 210° 240° 270° 300° 330" 360°

Free-air gravity anomalies computed from EGMO8, averaged over 5 arc-minute by 5 arc-minute cells on the surface of the Earth. A gravity anomaly
is the difference of actual (observed) gravity from a nominal (theoretical) value. The unit is “milliGal” (denoted mGal, where 1 mGal = 10-° ms?),
which corresponds approximately to 1 part per million of the gravity acceleration sensed by an observer on the Earth’s surface. Notice the numerous
geophysical features that are revealed, such as oceanic trenches, ridges, subduction and fracture zones, and seamount chains.



Conflict between Computer Science
and Numerical Analysis

There is a substantial conflict between theoretical computer science
and numerical analysis. These two subjects with common goals
have grown apart. For example, computer scientists are uneasy with
calculus, whereas numerical analysis thrives on it. On the other hand
numerical analysis see no use for the Turing machine.

A major obstacle to reconciling scientific computation and computer
science is the present view of the machine, that is, the digital computer. As
long as the computer is seen simply as a finite or discrete object, it will be
difficult to systematize numerical analysis. We believe that the Turing
machine as a foundation for real number algorithms can only obscure

concepts.

(Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and real computation. Springer-
Verlag, New York, 1998, p. 23)
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Machine corresponding to the
polynomial map g:C —C

z Input z€C

Compute

g(z) and

replace z by g(z)

Branch

|z] = o 2] < C,

Output z

Q,,: The halting set of M = all zin C where gX(z)>o° when k>0

If g(z)=z%+c, then Q,,is R.E but not decidable over R.
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attention



