- 6.18. THEOREM. If ZFC is consistent, so are:
 - (a) ZFC + CH + $2^{\omega_1} = \omega_2 + 2^{\omega_2} = \omega_{\omega_8}$.
 - (b) ZFC + CH + $2^{\omega_1} = \omega_5 + 2^{\omega_2} = \omega_7$.
 - (c) ZFC + $2^{\omega} = \omega_3 + 2^{\omega_1} = \omega_4 + 2^{\omega_2} = \omega_6$.

PROOF. In all cases, start with M satisfying ZFC + GCH.

For (a) Let $\mathbf{P} = (\operatorname{Fn}(\omega_{\omega_n} \times \omega_2, 2, \omega_2))^{\mathbf{M}}$. By Theorem 6.17, IP preserves cardinals and if G is IP-generic over M, $(2^{\omega_2} = \omega_{\omega_0})^{\mathbf{M}(G)}$. The fact that $2^{\omega_1} = \omega_2$ holds in $M \setminus G$ follows from the fact that $({}^{(\omega_1}2)^{\mathbf{M}} = ({}^{(\omega_1}2)^{\mathbf{M}(G)})^{\mathbf{M}(G)}$ by Theorem 6.14. Thus, if $F \in M$ and $(F \text{ maps } \omega_2 \text{ onto } {}^{(\omega_2)}2)^{\mathbf{M}}$, then $(F \text{ maps } \omega_2 \text{ onto } {}^{(\omega_2)}2)^{\mathbf{M}(G)}$. Likewise, $(2^{\omega_2} = \omega_1)^{\mathbf{M}(G)}$.

For (b) we force twice. Let $\mathbb{P} = (\operatorname{Fn}(\omega_7 \times \omega_2, 2, \omega_2))^{\mathsf{M}}$, let G be \mathbb{P} -generic over M, and let N = M[G]; then as in (a),

$$(2^{\omega} = \omega_1 \wedge 2^{\omega_1} = \omega_2 \wedge 2^{\omega_2} = \omega_7)^N$$
.

Furthermore, $(\kappa^{\omega_1} = \kappa)^N$ whenever $(\kappa \ge \omega_2 \wedge \kappa$ is regular)^N, since this is true in M by $(GCH)^M$, and $({}^{(\omega_1)}\kappa)^M = ({}^{(\omega_1)}\kappa)^N$. We now apply our results on forcing with N as the ground model instead of M. Let

$$\mathbf{Q} = (\operatorname{Fn}(\omega_5 \times \omega_1, 2, \omega_1))^N.$$

By $(2^{-\omega_1} = \omega_1)^N$, Φ preserves cardinals. Let H be Φ -generic over N. $(CH)^{N(H)}$ is proved as in (a). $(2^{\omega_2} \ge \omega_7)^{N(H)}$ follows from $(2^{\omega_2} \ge \omega_7)^N$. To see that in fact $(2^{\omega_2} = \omega_7)^{N(H)}$, use the method of Theorem 6.17; namely, in N, Φ has the ω_2 -c.c. and $|\Phi| = \omega_2^N = \omega_5$, so there are only $((\omega_3)^{\omega_1})^{\omega_2} = \omega_7$ nice names for subsets of ω_2 . To see that $(2^{\omega_1} = \omega_3)^{N(H)}$, apply Theorem 6.17 directly, plus the fact that $(\omega_2^n = \omega_3)^N$.

For (c), force three times, and construct $M \subset N_1 \subset N_2 \subset N_3$. N_1 satisfies $2^\omega = \omega_1 \wedge 2^{\omega_1} = \omega_2 \wedge 2^{\omega_2} = \omega_6$, N_2 satisfies $2^\omega = \omega_1 \wedge 2^{\omega_1} = \omega_4 \wedge 2^{\omega_2} = \omega_6$, and N_3 satisfies (c). \square

In proving (b) and (c), it is very important that we proceed backwards, dealing with the largest cardinal first. For example, if we tried to prove (b) letting $\mathbb{P} = (\operatorname{Fn}(\omega_5 \times \omega_1, 2, \omega_1))^{\mathsf{M}}$ and N = M[G], where G is \mathbb{P} -generic over M, then N would satisfy $2^{\omega_1} = \omega_3$. Thus, $(2^{<\omega_2} \neq \omega_3)^{\mathsf{N}}$, so if