
Set Theory, Homework 8

November 5, 2021

Exercise 27

Proposition. Let  be infinite. Then every ordinal ↵ < + can be written as
the union of countable sets, ↵ =

S
n<!

X↵,n; such that for every n the order
type of X↵,n is at most n (ordinal power).

Proof. We can distinguish two cases:

• ↵  : Then let X↵,0 = 0 and X↵,n = ↵ for 0 < n < !. Then clearly

↵ =
S

n<!
X↵,n and for every n > 0 we have that ↵  n

as ↵  .
Furthermore, for n = 0 we see that 0  0

= 0.

•  < ↵ < +
: We’ll distinguish between ↵ a successor ordinal and a limit

ordinal. Furthermore, we’ll assume that X�,n has been defined for all

ordinals � smaller than ↵.

If ↵ is a successor ordinal such that ↵ = � + 1 we define X↵,n as:

– X↵,0 = {�}
– X↵,n+1 = X�,n

Now assume it holds for ↵, so
S

n<!
X↵,n = ↵ and for all n we have

hX↵,ni  n
(where hXi is the order type of X). Now

S
n<!

X↵+1,n =

{↵} [
S

n<!
X↵,n =IH ↵ [ {↵} = ↵ + 1. Now X↵+1,0 = {↵} which has

order type 1, so 1  0
. Furthermore, we have hX↵+1,n+1i = hX↵,ni IH

n  n+1
.

Now let ↵ be a limit ordinal. Then we know that ↵ =
S

�<↵
�. So by

assumption
S

�<↵
=

S
�<↵

S
n<!

X�,n =
S

n<!

S
�<↵

X�,n. And there-

fore we know that
S

�<↵
X�,n  ↵. And as cf↵   it follows that

cf(
S

�<↵
X�,n)  . Now let us say ✏ = cf(

S
�<↵

X�,n), so ✏  .
So there is some X�,n of cardinality ✏ that is cofinal in

S
�↵

X�,n.

So now let X↵,n+1 be the union of all these X�,n. Then we see thatS
n<!

X↵,n = ↵. And now as each
S

�<↵
X�,n had order type of at most

n
we see that X↵,n+1 has order type at most n · ✏. And as ✏   we get

n · ✏  n ·  = n+1
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Exercise 28

Proposition. Let � be an infinite cardinal and hi; i < �i an increasing se-
quence of regular cardinals, and  = supi<�i. Then 2


=

Q
i<�

2
i .

Proof. We will prove this by giving a bijection between the set P () and the

product set
Q

i<�
P (i).

First consider
P

i<�
i = � · sup

i<�
i = � · . Now we see that �  

as i <  and the sequence is increasing. Hence,
P

i<�
i = . Therefore

we see that there is a bijection f :  !
P

i<�
i. So we define the function

g : P () ! P (
P

i<�
i) so that g(s) = f [s]. This clearly is a bijection as f was

a bijection.

Now we know that we can see
Q

i<�
P (i) as the set of choice functions on

P (i). So let h : P (
P

i<�
i) !

Q
i<�

P (i) be such that h(s0) = c where c is

the choice function such that for all i we have c(i) = t i↵ s0 \ i = t. This also
is a bijection.

So now we can see that h�g is a bijection between P () and
Q

i<�
P (i).

Exercise 29

a)

Proposition. @@1
!

= @@0
!

· 2@1

Proof. First note that by Theorem 5.20i) we have @@1
1 = 2

@1 . Now we can

distinguish two cases:

• @! > @@1
1 : Now let µ < @!, so µ = @n+1 for some n < !. By the Hausdor↵

formula we see that @@1
n+1 = @@1

n
·@n+1. We can continue this progress until

we get to @@1
n+1 = @@1

1 · . . . · @n+1. And as we know of each of these that

they are strictly smaller than @! we see that @@1
n+1 < @!. Therefore we

see that for all µ < @! we have that µ@1 < @!. And as cf@! = @0  @1

we see by Theorem 5.20 iii)b) that @@1
!

= @cf@!
!

= @@0
!
. And as @! > @@1

1

we also have @@0
!

> @@1

1 and therefore @@0
!

· 2@1 = @@0
!

= @@1
!
.

• @!  @@1
1 : Then as @1 < @! and @@1

1 � @! we get by Theorem 5.20

ii) that @@1
!

= @@1
1 . So we see that @@0

!
< @@1

!
= @@1

1 . And therefore

@@0
!

· 2@1 = 2
@1 = @@1

!
.

b)

Proposition. If 2@1 = @2 and @@0
!

> @!1 , then @@1
!1

= @@0
!
.

Proof. As @! < @!1 and @@1
!

� @@0
!

> @!1 , we see by Theorem 5.20 ii) that

@@1
!1

= @@1
!
. Now by a) we see that @@1

!
= @@0

!
· 2@1 . And by our assumption

this means @@1
!

= @@0
!

· @2. So as @2 < @!  @@0
!

we see that @@1
!

= @@0
!
. And

therefore we have now shown that @@1
!1

= @@1
!

= @@0
!
.
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c)

Proposition. If 2@0 � @!1 , then j(@!) = 2
@0 and j(@!1) = 2

@1 .

Proof. So first let us consider j(@!). We know that cf@! = @0, and thus

j(@!) = @cf@!
!

= @@0
!
. Furthermore, we know that 2 < @! and 2

@0 � @!1 > @!.

And therefore we see by Theorem 5.20 ii) that @@0
!

= 2
@0 . So indeed j(@!) = 2

@0 .

Now let us consider j(@!1). We know that cf@!1 = @1, and thus j(@!1) =

@@1
!1
. Furthermore, we know that 2 < @!1 and 2

@1 � 2
@0 � @!1 . So by Theorem

5.20 ii) we see that @@1
!1

= 2
@1 . And so also j(@!1) = 2

@1 .

Exercise 30

Proposition. If � is such that 2@↵ = @↵+� for all ↵. Then � < !.

Proof. So suppose this is not the case, so � � !. Now let ↵ be minimal such

that ↵ + � > �. Now we can write � in its Cantor Normal form and say that

!�
is the biggest factor in it. For contradiction suppose that ↵ is a successor

cardinal so that ↵ = � + 1. As ↵ was minimal � + �  � and thus � < !�
. But

as !�
is a limit ordinal we also have ↵ < !�

. So then we ↵ gets swallowed by

�. And thus ↵+ �  �, a contradiction. So we see that ↵ is a limit.

Now let  = @↵+↵. As ↵ is a limit ordinal, so is ↵ + ↵. So then  is a

limit ordinal, i.e.,  =
S

✏<↵
@↵+✏. This is a union of ↵ elements so cf  ↵ <

@↵+↵ = . And therefore we see that  is singular.

Now we’ll assume that for all ✏ < ↵ we have 2
@↵+✏ = @↵+� . So as  is a limit,

we see by Theorem 5.16 iii) that 2

= (2

<
)
cf

. Now as 2
<

= sup
✏<↵

@↵+✏ =

@↵+� we see that 2
  (@↵+�)

cf
= (2

@↵)
cf  (2

@↵)
↵
= 2

@↵ = @↵+� . But by

our assumption we have that 2

= 2

@↵+↵ = @↵+↵+� . And that is strictly bigger

than @↵+� as already ↵ + � > �. So we have a contradiction and we find that

indeed � < !.
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