Set Theory, Homework 8

November 5, 2021

Exercise 27

Proposition. Let κ be infinite. Then every ordinal $\alpha < \kappa^+$ can be written as the union of countable sets, $\alpha = \bigcup_{n < \omega} X_{\alpha,n}$; such that for every n the order type of $X_{\alpha,n}$ is at most κ^n (ordinal power).

Proof. We can distinguish two cases:

- $\alpha \leq \kappa$: Then let $X_{\alpha,0} = 0$ and $X_{\alpha,n} = \alpha$ for $0 < n < \omega$. Then clearly $\alpha = \bigcup_{n < \omega} X_{\alpha,n}$ and for every n > 0 we have that $\alpha \leq \kappa^n$ as $\alpha \leq \kappa$. Furthermore, for n = 0 we see that $0 \leq \kappa^0 = 0$.
- $\kappa < \alpha < \kappa^+$: We'll distinguish between α a successor ordinal and a limit ordinal. Furthermore, we'll assume that $X_{\beta,n}$ has been defined for all ordinals β smaller than α .

If α is a successor ordinal such that $\alpha = \beta + 1$ we define $X_{\alpha,n}$ as:

$$-X_{\alpha,0} = \{\beta\}$$

$$-X_{\alpha,n+1} = X_{\beta,n}$$

Now assume it holds for α , so $\bigcup_{n < \omega} X_{\alpha,n} = \alpha$ and for all n we have $\langle X_{\alpha,n} \rangle \leq \kappa^n$ (where $\langle X \rangle$ is the order type of X). Now $\bigcup_{n < \omega} X_{\alpha+1,n} = \{\alpha\} \cup \bigcup_{n < \omega} X_{\alpha,n} =_{IH} \alpha \cup \{\alpha\} = \alpha + 1$. Now $X_{\alpha+1,0} = \{\alpha\}$ which has order type 1, so $1 \leq \kappa^0$. Furthermore, we have $\langle X_{\alpha+1,n+1} \rangle = \langle X_{\alpha,n} \rangle \leq_{IH} \kappa^n \leq \kappa^{n+1}$.

Now let α be a limit ordinal. Then we know that $\alpha = \bigcup_{\beta < \alpha} \beta$. So by assumption $\bigcup_{\beta < \alpha} = \bigcup_{\beta < \alpha} \bigcup_{n < \omega} X_{\beta,n} = \bigcup_{n < \omega} \bigcup_{\beta < \alpha} X_{\beta,n}$. And therefore we know that $\bigcup_{\beta < \alpha} X_{\beta,n} \leq \alpha$. And as $cf\alpha \leq \kappa$ it follows that $cf(\bigcup_{\beta < \alpha} X_{\beta,n}) \leq \kappa$. Now let us say $\epsilon = cf(\bigcup_{\beta < \alpha} X_{\beta,n})$, so $\epsilon \leq \kappa$. So there is some $X_{\gamma,n}$ of cardinality ϵ that is cofinal in $\bigcup_{\beta \leq \alpha} X_{\beta,n}$. So now let $X_{\alpha,n+1}$ be the union of all these $X_{\gamma,n}$. Then we see that $\bigcup_{n < \omega} X_{\alpha,n} = \alpha$. And now as each $\bigcup_{\beta < \alpha} X_{\beta,n}$ had order type of at most κ^n we see that $X_{\alpha,n+1}$ has order type at most $\kappa^n \cdot \epsilon$. And as $\epsilon \leq \kappa$ we get $\kappa^n \cdot \epsilon \leq \kappa^n \cdot \kappa = \kappa^{n+1}$

Exercise 28

Proposition. Let λ be an infinite cardinal and $\langle \kappa_i; i < \lambda \rangle$ an increasing sequence of regular cardinals, and $\kappa = \sup_{i < \lambda} \kappa_i$. Then $2^{\kappa} = \prod_{i < \lambda} 2^{\kappa_i}$.

Proof. We will prove this by giving a bijection between the set $P(\kappa)$ and the product set $\prod_{i < \lambda} P(\kappa_i)$.

First consider $\sum_{i < \lambda} \kappa_i = \lambda \cdot \sup_{i < \lambda} \kappa_i = \lambda \cdot \kappa$. Now we see that $\lambda \leq \kappa$ as $\kappa_i < \kappa$ and the sequence is increasing. Hence, $\sum_{i < \lambda} \kappa_i = \kappa$. Therefore we see that there is a bijection $f : \kappa \to \sum_{i < \lambda} \kappa_i$. So we define the function $g : P(\kappa) \to P(\sum_{i < \lambda} \kappa_i)$ so that g(s) = f[s]. This clearly is a bijection as f was a bijection.

Now we know that we can see $\prod_{i < \lambda} P(\kappa_i)$ as the set of choice functions on $P(\kappa_i)$. So let $h: P(\sum_{i < \lambda} \kappa_i) \to \prod_{i < \lambda} P(\kappa_i)$ be such that h(s') = c where c is the choice function such that for all i we have c(i) = t iff $s' \cap \kappa_i = t$. This also is a bijection.

So now we can see that $h \circ g$ is a bijection between $P(\kappa)$ and $\prod_{i < \lambda} P(\kappa_i)$. \Box

Exercise 29

a)

Proposition. $\aleph_{\omega}^{\aleph_1} = \aleph_{\omega}^{\aleph_0} \cdot 2^{\aleph_1}$

Proof. First note that by Theorem 5.20i) we have $\aleph_1^{\aleph_1} = 2^{\aleph_1}$. Now we can distinguish two cases:

- $\aleph_{\omega} > \aleph_1^{\aleph_1}$: Now let $\mu < \aleph_{\omega}$, so $\mu = \aleph_{n+1}$ for some $n < \omega$. By the Hausdorff formula we see that $\aleph_{n+1}^{\aleph_1} = \aleph_n^{\aleph_1} \cdot \aleph_{n+1}$. We can continue this progress until we get to $\aleph_{n+1}^{\aleph_1} = \aleph_1^{\aleph_1} \cdot \ldots \cdot \aleph_{n+1}$. And as we know of each of these that they are strictly smaller than \aleph_{ω} we see that $\aleph_{n+1}^{\aleph_1} < \aleph_{\omega}$. Therefore we see that for all $\mu < \aleph_{\omega}$ we have that $\mu^{\aleph_1} < \aleph_{\omega}$. And as $cf\aleph_{\omega} = \aleph_0 \leq \aleph_1$ we see by Theorem 5.20 iii)b) that $\aleph_{\omega}^{\aleph_1} = \aleph_{\omega}^{cf\aleph_{\omega}} = \aleph_{\omega}^{\aleph_0}$. And as $\aleph_{\omega} > \aleph_1^{\aleph_1}$ we also have $\aleph_{\omega}^{\aleph_0} > \aleph_1^{\aleph_1}$ and therefore $\aleph_{\omega}^{\aleph_0} \cdot 2^{\aleph_1} = \aleph_{\omega}^{\aleph_0} = \aleph_{\omega}^{\aleph_1}$.
- $\aleph_{\omega} \leq \aleph_{1}^{\aleph_{1}}$: Then as $\aleph_{1} < \aleph_{\omega}$ and $\aleph_{1}^{\aleph_{1}} \geq \aleph_{\omega}$ we get by Theorem 5.20 ii) that $\aleph_{\omega}^{\aleph_{1}} = \aleph_{1}^{\aleph_{1}}$. So we see that $\aleph_{\omega}^{\aleph_{0}} < \aleph_{\omega}^{\aleph_{1}} = \aleph_{1}^{\aleph_{1}}$. And therefore $\aleph_{\omega}^{\aleph_{0}} \cdot 2^{\aleph_{1}} = 2^{\aleph_{1}} = \aleph_{\omega}^{\aleph_{1}}$.

b)

Proposition. If $2^{\aleph_1} = \aleph_2$ and $\aleph_{\omega}^{\aleph_0} > \aleph_{\omega_1}$, then $\aleph_{\omega_1}^{\aleph_1} = \aleph_{\omega}^{\aleph_0}$.

Proof. As $\aleph_{\omega} < \aleph_{\omega_1}$ and $\aleph_{\omega}^{\aleph_1} \ge \aleph_{\omega}^{\aleph_0} > \aleph_{\omega_1}$, we see by Theorem 5.20 ii) that $\aleph_{\omega_1}^{\aleph_1} = \aleph_{\omega}^{\aleph_1}$. Now by a) we see that $\aleph_{\omega}^{\aleph_1} = \aleph_{\omega}^{\aleph_0} \cdot 2^{\aleph_1}$. And by our assumption this means $\aleph_{\omega}^{\aleph_1} = \aleph_{\omega}^{\aleph_0} \cdot \aleph_2$. So as $\aleph_2 < \aleph_{\omega} \le \aleph_{\omega}^{\aleph_0}$ we see that $\aleph_{\omega}^{\aleph_1} = \aleph_{\omega}^{\aleph_0}$. And therefore we have now shown that $\aleph_{\omega_1}^{\aleph_1} = \aleph_{\omega}^{\aleph_1} = \aleph_{\omega}^{\aleph_0}$.

Proposition. If $2^{\aleph_0} \ge \aleph_{\omega_1}$, then $\exists (\aleph_{\omega}) = 2^{\aleph_0}$ and $\exists (\aleph_{\omega_1}) = 2^{\aleph_1}$.

Proof. So first let us consider $\exists (\aleph_{\omega})$. We know that $cf\aleph_{\omega} = \aleph_0$, and thus $\exists (\aleph_{\omega}) = \aleph_{\omega}^{cf\aleph_{\omega}} = \aleph_{\omega}^{\aleph_0}$. Furthermore, we know that $2 < \aleph_{\omega}$ and $2^{\aleph_0} \ge \aleph_{\omega_1} > \aleph_{\omega}$. And therefore we see by Theorem 5.20 ii) that $\aleph_{\omega}^{\aleph_0} = 2^{\aleph_0}$. So indeed $\exists (\aleph_{\omega}) = 2^{\aleph_0}$.

Now let us consider $\mathfrak{I}(\aleph_{\omega_1})$. We know that $cf\aleph_{\omega_1} = \aleph_1$, and thus $\mathfrak{I}(\aleph_{\omega_1}) = \aleph_{\omega_1}^{\aleph_1}$. Furthermore, we know that $2 < \aleph_{\omega_1}$ and $2^{\aleph_1} \ge 2^{\aleph_0} \ge \aleph_{\omega_1}$. So by Theorem 5.20 ii) we see that $\aleph_{\omega_1}^{\aleph_1} = 2^{\aleph_1}$. And so also $\mathfrak{I}(\aleph_{\omega_1}) = 2^{\aleph_1}$. \Box

Exercise 30

Proposition. If β is such that $2^{\aleph_{\alpha}} = \aleph_{\alpha+\beta}$ for all α . Then $\beta < \omega$.

Proof. So suppose this is not the case, so $\beta \geq \omega$. Now let α be minimal such that $\alpha + \beta > \beta$. Now we can write β in its Cantor Normal form and say that ω^{γ} is the biggest factor in it. For contradiction suppose that α is a successor cardinal so that $\alpha = \delta + 1$. As α was minimal $\delta + \beta \leq \beta$ and thus $\delta < \omega^{\gamma}$. But as ω^{γ} is a limit ordinal we also have $\alpha < \omega^{\gamma}$. So then we α gets swallowed by β . And thus $\alpha + \beta \leq \beta$, a contradiction. So we see that α is a limit.

Now let $\kappa = \aleph_{\alpha+\alpha}$. As α is a limit ordinal, so is $\alpha + \alpha$. So then κ is a limit ordinal, i.e., $\kappa = \bigcup_{\epsilon < \alpha} \aleph_{\alpha+\epsilon}$. This is a union of α elements so $cf\kappa \le \alpha < \aleph_{\alpha+\alpha} = \kappa$. And therefore we see that κ is singular.

Now we'll assume that for all $\epsilon < \alpha$ we have $2^{\aleph_{\alpha+\epsilon}} = \aleph_{\alpha+\beta}$. So as κ is a limit, we see by Theorem 5.16 iii) that $2^{\kappa} = (2^{<\kappa})^{cf\kappa}$. Now as $2^{<\kappa} = \sup_{\epsilon < \alpha} \aleph_{\alpha+\epsilon} = \aleph_{\alpha+\beta}$ we see that $2^{\kappa} \le (\aleph_{\alpha+\beta})^{cf\kappa} = (2^{\aleph_{\alpha}})^{cf\kappa} \le (2^{\aleph_{\alpha}})^{\alpha} = 2^{\aleph_{\alpha}} = \aleph_{\alpha+\beta}$. But by our assumption we have that $2^{\kappa} = 2^{\aleph_{\alpha+\alpha}} = \aleph_{\alpha+\alpha+\beta}$. And that is strictly bigger than $\aleph_{\alpha+\beta}$ as already $\alpha + \beta > \beta$. So we have a contradiction and we find that indeed $\beta < \omega$.

c)