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Exercise 27

Proposition. Let k be infinite. Then every ordinal o < k+ can be written as
the union of countable sets, a« = U, ., Xa,n; such that for every n the order
type of Xa.n is at most k™ (ordinal power).

Proof. We can distinguish two cases:

e o < k: Then let X, =0 and X, ,, = o for 0 < n < w. Then clearly
a = U,<, Xan and for every n > 0 we have that a < & as a < k.
Furthermore, for n = 0 we see that 0 < k% = 0.

e k< a< kT : We'll distinguish between « a successor ordinal and a limit
ordinal. Furthermore, we’ll assume that Xg , has been defined for all
ordinals 8 smaller than «.

If o is a successor ordinal such that o = 3 + 1 we define X, ,, as:

- Xa,O = {ﬁ}
- Xa,n+1 = Xﬁ,n

Now assume it holds for «, so Un<w Xan = o and for all n we have
(Xa,n) < K™ (where (X) is the order type of X). Now |, Xatin =
{a} UU,co, Xam =1 aU{a} = a+ 1. Now Xs11,0 = {a} which has
order type 1, so 1 < . Furthermore, we have (Xo11.n41) = (Xan) <t
K< gt

Now let a be a limit ordinal. Then we know that a = U5<a B. So by
assumption Uz, = Ugca Unew X = Upew Usco Xpn- And there-
fore we know that UB<a Xgn < o And as cfa < kit follows that
cf(Upca Xpn) < k. Now let us say € = cf(Ug, Xpn): s0 € < k.
So there is some X, , of cardinality e that is cofinal in U,@ga Xg.n-
So now let X4 n41 be the union of all these X, ,. Then we see that
Un<w Xan = @ And now as each s, Xg,» had order type of at most
K" we see that X, 1 has order type at most k" -e. And as € < k we get
K" e < kM. g = gL

O



Exercise 28

Proposition. Let A be an infinite cardinal and (k;;1 < A) an increasing se-
quence of reqular cardinals, and Kk = sup;<xr;. Then 2% =T, 2.

Proof. We will prove this by giving a bijection between the set P(x) and the
product set J[, .\ P(k;).

First consider ), y ki = A-sup;.yk; = A- k. Now we see that X < &
as k; < k and the sequence is increasing. Hence, ) ., x; = k. Therefore
we see that there is a bijection f : k — >, _\ k;. So we define the function
g: P(k) = P(3_, . ki) so that g(s) = f[s]. This clearly is a bijection as f was
a bijection.

Now we know that we can see [[,_, P(k;i) as the set of choice functions on
P(k;). Solet h: P(} ;5 ki) = [[;ox P(ki) be such that h(s’) = ¢ where c is
the choice function such that for all ¢ we have ¢(i) = ¢ iff s’ Nx; = ¢. This also
is a bijection.

So now we can see that hog is a bijection between P(x) and [,y P(k;). O

Exercise 29

a)
Proposition. Rt = X% . 2%

Proof. First note that by Theorem 5.20i) we have Nizl = 2%, Now we can
distinguish two cases:

o N, > N?lz Now let p < X, so p = N,, ;1 for some n < w. By the Hausdorff
formula we see that Nﬁlﬂ = RN R, ;1. We can continue this progress until
we get to Niﬁrl =R, R,41. And as we know of each of these that
they are strictly smaller than R, we see that Niﬂrl < R,. Therefore we
see that for all ;1 < X, we have that ;N < X,. And as cfR, = Ry < N
we see by Theorem 5.20 iii)b) that RX1 = R¢/®w = KR And as R, > R}

we also have R0 > N‘fl and therefore R0 . 281 = %o = NN,

o N, < N}flz Then as N; < N, and szl > N, we get by Theorem 5.20
ii) that XXt = X", So we see that R0 < ¥ = R, And therefore
R¥o . 2% = 9N = RN,

O

b)

Proposition. If 2™ =Xy and R}° > R, , then R} = R¥o.

Proof. As R, < N, and X%t > RR > R, . we see by Theorem 5.20 ii) that
NS; = X% Now by a) we see that RN = 80 . 2% And by our assumption

this means RX1 = RX0 . Ry, So as Ny < N, < XV we see that X1 = ®¥. And
therefore we have now shown that Rij! = R}t = R0, O



c)

Proposition. If 2% >N, , then I(X,,) = 2% and I(R,,) = 2%1.

Proof. So first let us consider J(N,). We know that cfR, = Ny, and thus
I(R,) = ReRe = VR0 Furthermore, we know that 2 < R, and 2% >R, > X,
And therefore we see by Theorem 5.20 ii) that RX0 = 2%, So indeed I(R,,) = 2%0.

Now let us consider I(R,,). We know that ¢fR,, = Ny, and thus I(R,,) =
Nﬁ} Furthermore, we know that 2 < N,,, and 281 > 9Ro > R, . So by Theorem
5.20 ii) we see that RSl = 2% And so also I(R,,) = 281, O

Exercise 30

Proposition. If 3 is such that 2% =X, 5 for all . Then 8 < w.

Proof. So suppose this is not the case, so 8 > w. Now let a be minimal such
that a + 8 > 5. Now we can write 8 in its Cantor Normal form and say that
w? is the biggest factor in it. For contradiction suppose that « is a successor
cardinal so that « = § + 1. As « was minimal 6 + 8 < 8 and thus § < w?. But
as w” is a limit ordinal we also have o < w?. So then we « gets swallowed by
5. And thus a + 8 < 8, a contradiction. So we see that « is a limit.

Now let k = Nyyo. As «a is a limit ordinal, so is & + a. So then « is a
limit ordinal, i.e., x = (.., Rate. This is a union of a elements so cfr < a <
No1aq = k- And therefore we see that k is singular.

Now we’ll assume that for all € < o we have 28+ = R, 5. So as & is a limit,
we see by Theorem 5.16 iii) that 2% = (2<%)¢/*. Now as 2<" = sup, ., Notc =
N,1p we see that 2% < (R, p5)¢/" = (2Na)efr < (2Ra)> = 2%« =R | 5. But by
our assumption we have that 2% = 2Re+e =X, 1,1 5. And that is strictly bigger
than N, as already a + 5 > 3. So we have a contradiction and we find that
indeed f < w. O



