Homework Sheet \#7

Deadline for Homework Set \#7: Monday, 1 November 2021, 2pm. Please hand in via the elo webpage as a single pdf file.
(24) Let κ, λ, μ, and ν be non-zero cardinals. Show the following rules of cardinal arithmetic by providing explicit bijections or injections between the corresponding sets:
(a) $(\kappa \cdot \lambda)^{\mu}=\kappa^{\mu} \cdot \lambda^{\mu}$,
(b) $\kappa^{\lambda} \cdot \kappa^{\mu}=\kappa^{\lambda+\mu}$, and
(c) $\left(\kappa^{\lambda}\right)^{\mu}=\kappa^{\lambda \cdot \mu}$.
(d) If $\kappa \leq \lambda$ and $\mu \leq \nu$, then $\kappa^{\mu} \leq \lambda^{\nu}$.
(25) Show that the following sets have cardinality $2^{\aleph_{0}}$:
(a) \mathbb{R},
(b) \mathbb{C},
(c) the set of continuous functions from \mathbb{R} to \mathbb{R}.
[Hint. For (a) and (b), first be precise about what \mathbb{R} and \mathbb{C} actually are. You might wish to use the Cantor-Schröder-Bernstein Theorem. For (c), note that continuous functions that agree on the rationals are equal (why?).]
(26) Show the following additional closure properties of limit levels of the von Neumann hierarchy.
(a) Let λ be any limit ordinal. Assume ZFC and show that \mathbf{V}_{λ} satisfies AC by showing that the choice function for any set $x \in \mathbf{V}_{\lambda}$ lies in \mathbf{V}_{λ}.
(b) Let λ be any uncountable limit cardinal. Assume $\mathrm{ZFC}+\mathrm{GCH}$ and show that \mathbf{V}_{λ} satisfies GCH by showing that for each $\kappa<\lambda$, the bijection between κ^{+}and the power set of κ is in \mathbf{V}_{λ}.

