Homework Sheet #7

MasterMath: Set Theory 2021/22: 1st Semester K. P. Hart, Steef Hegeman, Benedikt Löwe, Robert Paßmann

Deadline for Homework Set #7: Monday, 1 November 2021, 2pm. Please hand in via the elo webpage as a single pdf file.

- (24) Let κ , λ , μ , and ν be non-zero cardinals. Show the following rules of *cardinal arithmetic* by providing explicit bijections or injections between the corresponding sets:
 - (a) $(\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}$,
 - (b) $\kappa^{\lambda} \cdot \kappa^{\mu} = \kappa^{\lambda+\mu}$, and
 - (c) $(\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}$.
 - (d) If $\kappa \leq \lambda$ and $\mu \leq \nu$, then $\kappa^{\mu} \leq \lambda^{\nu}$.
- (25) Show that the following sets have cardinality 2^{\aleph_0} :
 - (a) \mathbb{R} ,
 - (b) \mathbb{C} ,
 - (c) the set of continuous functions from \mathbb{R} to \mathbb{R} .

[*Hint.* For (a) and (b), first be precise about what \mathbb{R} and \mathbb{C} actually are. You might wish to use the Cantor-Schröder-Bernstein Theorem. For (c), note that continuous functions that agree on the rationals are equal (why?).]

- (26) Show the following additional closure properties of limit levels of the von Neumann hierarchy.
 - (a) Let λ be any limit ordinal. Assume ZFC and show that \mathbf{V}_{λ} satisfies AC by showing that the choice function for any set $x \in \mathbf{V}_{\lambda}$ lies in \mathbf{V}_{λ} .
 - (b) Let λ be any uncountable limit *cardinal*. Assume ZFC + GCH and show that \mathbf{V}_{λ} satisfies GCH by showing that for each $\kappa < \lambda$, the bijection between κ^+ and the power set of κ is in \mathbf{V}_{λ} .