(24) Let κ, λ, μ, and ν be nonzero cardinals.
(a) $(\kappa \cdot \lambda)^{\mu}=\kappa^{\mu} \cdot \lambda^{\mu}$

Proof. It suffices to show that $|\boldsymbol{\operatorname { S e t }}(\mu, \kappa \times \lambda)|=|\boldsymbol{\operatorname { S e t }}(\mu, \kappa) \times \boldsymbol{\operatorname { S e t }}(\mu, \lambda)|$. Define G and H such that

$$
\operatorname{Set}(\mu, \kappa \times \lambda) \underset{H}{\stackrel{G}{\rightleftarrows}} \operatorname{Set}(\mu, \kappa) \times \operatorname{Set}(\mu, \lambda)
$$

where $G(f)=\left(\pi_{\kappa} \circ f, \pi_{\lambda} \circ f\right)$ and $H\left(f_{\kappa}, f_{\lambda}\right)=\left(x \mapsto\left(f_{\kappa}(x), f_{\lambda}(x)\right)\right)$. Then H is the inverse of G, so G is a bijection.
(b) $\kappa^{\lambda} \cdot \kappa^{\mu}=\kappa^{\lambda+\mu}$

Proof. Define G and H such that

$$
\operatorname{Set}(\lambda, \kappa) \times \operatorname{Set}(\mu, \kappa) \underset{H}{\stackrel{G}{\rightleftarrows}} \operatorname{Set}(\lambda \sqcup \mu, \kappa)
$$

where

$$
\begin{aligned}
G\left(f_{\lambda}, f_{\mu}\right) & =(x, i) \mapsto \begin{cases}f_{\lambda}(x) & \text { if } i=0 \\
f_{\mu}(x) & \text { if } i=1, \text { and }\end{cases} \\
H(f) & =(f \upharpoonright\{(x, i) \mid i=0\}, f \upharpoonright\{(x, i) \mid i=1\})
\end{aligned}
$$

Then H is the inverse of G, so G is a bijection.
(c) $\left(\kappa^{\lambda}\right)^{\mu}=\kappa^{\lambda \cdot \mu}$

Proof. This follows from the fact that, for any two given sets X and Y, the set $\operatorname{Set}(X, Y)=Y^{X}$ is an exponential object of X and Y in Set. In other words, Currying and unCurrying of functions witness our desired bijection.
(d) If $\kappa \leq \lambda$ and $\mu \leq \nu$, then $\kappa^{\mu} \leq \lambda^{\mu}$.

Proof. Since $\kappa \leq \lambda$ and $\mu \leq \nu$, we know that $\kappa \subseteq \lambda$ and $\mu \subseteq \nu$. Define $I: \operatorname{Set}(\mu, \kappa) \rightarrow \boldsymbol{\operatorname { S e t }}(\nu, \lambda)$ by the equation

$$
I(f)(x)= \begin{cases}f(x) & \text { if } x \in \mu \\ 0 & \text { otherwise }\end{cases}
$$

Then $I(f): \nu \rightarrow \lambda$ and, clearly, I is injective, so I witnesses $|\boldsymbol{\operatorname { S e t }}(\mu, \kappa)| \leq$ $|\boldsymbol{\operatorname { S e t }}(\nu, \lambda)|$.
(25) The following sets have cardinality $2^{\aleph_{0}}$.
(a) \mathbb{R}.

Proof. $|\mathbb{R}|=|[0,1]|=|\mathscr{P}(\omega)|=|\boldsymbol{\operatorname { S e t }}(\omega,\{0,1\})|=2^{\aleph_{0}}$.
(b) \mathbb{C}

Proof. $|\mathbb{C}|=\left|\mathbb{R}^{2}\right|=|\mathbb{R}|=2^{\aleph_{0}}$.
(c) $\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is continuous $\}$

Proof. By ZFC, we know that sequential continuity is equivalent to continuity. Because every real r is a limit of a convergent sequence of rational numbers $\left\langle r_{i} \mid i \in \omega\right\rangle$, we know that if $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and agree on rationals, then $f=g$ because, for all $r, f(r)=\lim _{i \rightarrow \infty} f\left(r_{i}\right)=$ $\lim _{i \rightarrow \infty} g\left(r_{i}\right)=g(r)$.

Define the function $G:\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is continuous $\} \rightarrow \operatorname{Set}(\mathbb{Q}, \mathbb{R})$ by the equation $G(f)=f \upharpoonright \mathbb{Q}$. By the above, G is injective, so $\mid\{f: \mathbb{R} \rightarrow \mathbb{R} \mid$ f is continuous $\}\left|\leq|\operatorname{Set}(\mathbb{Q}, \mathbb{R})|=\left(2^{\aleph_{0}}\right)^{\aleph_{0}}=2^{\aleph_{0} \cdot \aleph_{0}}=2^{\aleph_{0}}\right.$.
(26) The von Neumann hierarchy has the following closure properties.
(a) Assume $V \models$ ZFC and $\lambda \in V$ is a limit ordinal. Then $V_{\lambda} \models \mathrm{AC}$.

Proof. Suppose that $x \in V_{\lambda}$ and that $f: x \rightarrow \bigcup x$ is a choice function. Since λ is a limit ordinal and $x \in V_{\lambda}$, we know $\varrho(x)=\alpha<\lambda$. This implies that $\varrho(\bigcup x) \leq \alpha$, and so $f \in \mathscr{P}(x \times \bigcup x) \in V_{\alpha+4}$. Thus, $\varrho(f) \leq \alpha+3<\lambda$, so $f \in V_{\lambda}$. Thus $V_{\lambda} \models \mathrm{AC}$.
(b) Assume $V \models$ ZFC + GCH and that $\lambda \in V$ is an uncountable limit cardinal. Then $V_{\lambda} \models$ GCH.

Proof. If λ is a limit cardinal then, for any cardinal $\kappa<\lambda$ we have $\kappa^{+}<\lambda$. This implies that κ^{+}and $\mathscr{P}(\kappa)$ are elements of V_{λ}, which, in turn, implies that $\operatorname{Set}\left(\kappa^{+}, \mathscr{P}(\kappa)\right)$ is an element of V_{λ}.

Since $V=\mathrm{GCH}$, we know there is some $f \in V$ such that $f: \kappa^{+} \rightarrow \mathscr{P}(\kappa)$ is a bijection. By the above, $\varrho(f)<\lambda$, so $f \in V_{\lambda}$, which implies that $V_{\lambda}=\mathrm{GCH}$.

