Exercise 21

Prove the Knaster-Tarski Fixed Point Theorem, the Banach decomposition Theorem and derive the cantor-Schröder-Bernstein Theorem.

Knaster-Tarski Fixed Point Theorem (KT-FPT): Let X be a set and $F : P(X) \to P(X)$ a \subseteq -monotone function. Then F has a fixed point.

Banach Decomposition theorem (BDT): Let X and Y be sets and $f: X \to Y$ and $g: Y \to X$ be arbitrary functions. Then there are disjoint decompositions $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$ such that $f[X_1] = Y_1$ and $f[Y_2] = X_2$.

Cantor-Schröder-Bernstein Theorem (CSBT): Let X and Y be sets. If there is an injection from X to Y and one from Y to X, then there exists a bijection between X and Y.

We start by proving KI-FPT. Let X be a set and $F : P(X) \to P(X)$ a \subseteq -monotone function. Define the following set:

$$\mathcal{A} := \{ A \subseteq X \mid A \subseteq F(A) \}$$

Consider the following set: $B = \bigcup A$. We will show B = F(B) by showing two inclusions:

• $B \subseteq F(B)$

Let $b \in B$. Then there is $A \in \mathcal{A}$ such that $b \in A$. As $A \subseteq F(A)$, we see $b \in F(A)$. By monotonicity of F and $A \subseteq B$, we see $F(A) \subseteq F(B)$. So $b \in F(B)$. Thus, $B \subseteq F(B)$.

• $F(B) \subseteq B$

As $B \subseteq F(B)$, $F(B) \subseteq F(F(B))$ by monotonicity. Thus, $F(B) \in \mathcal{A}$ an so, $F(B) \subseteq B$.

We conclude that B is a fixed point of F.

Now, we prove BDT. Let X and Y be sets and $f: X \to Y$ and $g: Y \to X$ functions. Consider the following function:

$$F: P(X) \to P(X): S \mapsto X \setminus g[Y \setminus f[S]]$$

We show this function is monotone: Let A and B be X-subsets such that $A \subseteq B$, then:

$$\begin{split} A &\subseteq B \to f[A] \subseteq f[B] \\ \to Y \setminus f[B] \subseteq Y \setminus f[A] \\ \to g[Y \setminus f[B]] \subseteq g[Y \setminus f[A]] \\ \to X \setminus g[Y \setminus f[A]] \subseteq X \setminus g[Y \setminus f[B]] \\ \to F(A) \subseteq F(B) \end{split}$$

So indeed, F is monotone. By KT-FPT, this function has a fixed point C:

$$C = F(C) = X \setminus g[Y \setminus f[C]]$$

Then, also: $X = C \cup g[Y \setminus f[C]]$ and $Y = f[C] \cup (Y \setminus f[C])$. So, we choose $X_1 = C$, $X_2 = g[Y \setminus f[C]]$, $Y_1 = f[C]$ and $Y_2 = Y \setminus f[C]$ (note these are disjoint). This proves BDT.

Finally, we will derive CSBT. Let X and Y be sets and $f: X \to Y$ and $g: Y \to X$ be injective functions. By BDT, there are disjoint compositions $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$ such that $f[X_1] = Y_1$ and $g[Y_2] = X_2$. As f and g are injections, so are $f \upharpoonright X_1$ and $g \upharpoonright Y_2$. Note

that these functions are reversible when domain and range are restricted: f acts as a bijection between X_1 and Y_1 and g acts as a bijection between Y_2 and X_2 .

Now, consider the following function:

$$F: X \to Y: x \mapsto \begin{cases} f(x) & \text{if } x \in X_1 \\ g^{-1}(x) & \text{if } x \in X_2 \end{cases}$$

This function is one-to-one, as f and g^{-1} are. If $y \in Y$, then either $y \in Y_1$ or Y_2 . In the former case, we know there is $x \in X_1$ such that f(x) = y, as $f[X_1] = Y_1$. In the latter case, we know there is a unique x such that g(y) = x. Thus, $g^{-1}(x) = y$. Thus, F is onto. We conclude F is a bijection. This proves CSBT.

22) X set of pairwise disj. non-cupty sets. E is a CHAITE SET for X iff trex, IrnCl=1 (ACS): Ferall X as above, there exists a choice set To show : In ZF, (AC) => (ACS) Proof . "=>" Let X be a set of fairw. dis; non-empty Sets. By assumption, Of X. By (AC), there exists a choice function of s.t. HREX first we then consider as our candidate choice set C = f(X). For all nex we have f(x) n 20 # \$, Shuce f(20) EX. Suppose by contradiction that f(X) n 20 7 } f(207, i.e. Micie exists an $z \in f(x) \cap x$, $z \neq f(x)$. Since $z \in f(x)$ z = f(y) for some $y \in x$. But then we know that L(y) e y since f is a choice function. By (1) and (2) we get fig) & xny, which is a contradiction since by assumption + 2, y = X, 20 y = p "En Let S be a family of romempty sets. Consider the Set X= 3 Jurx x, xESZ. Since 24\$ tres, \$\$ \$X. Also, the elements of X are pairwise obsignit: 10F 322×2 , 342×4 EX, Man 322×20 342×4 = \$ since x + y + n, y = S (by extensionality). We then apply (ACS) to X = I a choice set & s.t. V 127×21 EX 1 Co 422 × × 1=1, premere Co 3227×21 = (20, 20) where n'ex. Then define the map of s.t. V ne s f(n) = n', where $n' = C \cap 3n7 \times n$. By construction, f is protional and it is a choice prochien for S

23	AFRE: Prove Zorn's Letuna in ZFC.
	if 1P, L) is a partially ordered set such that each
	chain in noncer op has an upper bound, when p
	tos a narivar est.
	Let 19, () be a non-energy partially propried set it.
	each chair & has an upper bound?
	LEC St. CLU NCEC.
	Now, active by transfinite recursiona sequence as
	toromer:
	Let c be the choice sunction
	Det as = clast p' lapplication AC)
	and Pao = 2xeplaoixy
	IF Pa. = d, as is maximal and use are done.
	IF Tao # & def U, = C (Pao) = Pao and p: 0. = C (D) EP (Application Ac)
	appi'= clpanie Pan "
	and as := c (n Pr) enpy for & tirest and yet-
	If P has no maximum est, this definition would
	define a function from the ordinary to P that
-	is injective. If to the cup
	66 03
1	This is in contradiction with Hartogs's theorem,
	which says that for each set P litere exists
ter t	an ordinal that does not inject into P, so prouse
State 1	have a manimal en.