Exercise 21

Prove the Knaster-Tarski Fixed Point Theorem, the Banach decomposition Theorem and derive the cantor-Schröder-Bernstein Theorem.

Knaster-Tarski Fixed Point Theorem (KT-FPT): Let X be a set and $F: P(X) \rightarrow P(X)$ a \subseteq-monotone function. Then F has a fixed point.

Banach Decomposition theorem (BDT): Let X and Y be sets and $f: X \rightarrow Y$ and $g: Y \rightarrow$ X be arbitrary functions. Then there are disjoint decompositions $X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$ such that $f\left[X_{1}\right]=Y_{1}$ and $f\left[Y_{2}\right]=X_{2}$.

Cantor-Schröder-Bernstein Theorem (CSBT): Let X and Y be sets. If there is an injection from X to Y and one from Y to X, then there exists a bijection between X and Y.

We start by proving KI-FPT. Let X be a set and $F: P(X) \rightarrow P(X)$ a \subseteq-monotone function. Define the following set:

$$
\mathcal{A}:=\{A \subseteq X \mid A \subseteq F(A)\}
$$

Consider the following set: $B=\bigcup \mathcal{A}$. We will show $B=F(B)$ by showing two inclusions:

- $B \subseteq F(B)$

Let $b \in B$. Then there is $A \in \mathcal{A}$ such that $b \in A$. As $A \subseteq F(A)$, we see $b \in F(A)$. By monotonicity of F and $A \subseteq B$, we see $F(A) \subseteq F(B)$. So $b \in F(B)$. Thus, $B \subseteq F(B)$.

- $F(B) \subseteq B$

As $B \subseteq F(B), F(B) \subseteq F(F(B))$ by monotonicity. Thus, $F(B) \in \mathcal{A}$ an so, $F(B) \subseteq B$.
We conclude that B is a fixed point of F.
Now, we prove BDT. Let X and Y be sets and $f: X \rightarrow Y$ and $g: Y \rightarrow X$ functions. Consider the following function:

$$
F: P(X) \rightarrow P(X): S \mapsto X \backslash g[Y \backslash f[S]]
$$

We show this function is monotone: Let A and B be X-subsets such that $A \subseteq B$, then:

$$
\begin{aligned}
A \subseteq B & \rightarrow f[A] \subseteq f[B] \\
& \rightarrow Y \backslash f[B] \subseteq Y \backslash f[A] \\
& \rightarrow g[Y \backslash f[B]] \subseteq g[Y \backslash f[A]] \\
& \rightarrow X \backslash g[Y \backslash f[A]] \subseteq X \backslash g[Y \backslash f[B]] \\
& \rightarrow F(A) \subseteq F(B)
\end{aligned}
$$

So indeed, F is monotone. By KT-FPT, this function has a fixed point C :

$$
C=F(C)=X \backslash g[Y \backslash f[C]]
$$

Then, also: $X=C \cup g[Y \backslash f[C]]$ and $Y=f[C] \cup(Y \backslash f[C])$. So, we choose $X_{1}=C, X_{2}=g[Y \backslash f[C]]$, $Y_{1}=f[C]$ and $Y_{2}=Y \backslash f[C]$ (note these are disjoint). This proves BDT.

Finally, we will derive CSBT. Let X and Y be sets and $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be injective functions. By BDT, there are disjoint compositions $X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$ such that $f\left[X_{1}\right]=Y_{1}$ and $g\left[Y_{2}\right]=X_{2}$. As f and g are injections, so are $f \upharpoonright X_{1}$ and $g \upharpoonright Y_{2}$. Note
that these functions are reversible when domain and range are restricted: f acts as a bijection between X_{1} and Y_{1} and g acts as a bijection between Y_{2} and X_{2}.

Now, consider the following function:

$$
F: X \rightarrow Y: x \mapsto \begin{cases}f(x) & \text { if } x \in X_{1} \\ g^{-1}(x) & \text { if } x \in X_{2}\end{cases}
$$

This function is one-to-one, as f and g^{-1} are. If $y \in Y$, then either $y \in Y_{1}$ or Y_{2}. In the former case, we know there is $x \in X_{1}$ such that $f(x)=y$, as $f\left[X_{1}\right]=Y_{1}$. In the latter case, we know there is a unique x such that $g(y)=x$. Thus, $g^{-1}(x)=y$. Thus, F is onto. We conclude F is a bijection. This proves CSBT.
22) X set of pairwise dis; non.cupty sets. C is a CHOI CE Ser for X if $\forall x \in X,|x \cap C|=1$
(ACS): ferall x as above, Mere exists a choice set To show : In ZF, $(A C) \Leftrightarrow(A C S)$
Proof. $\Rightarrow n$ Let x be a set of fair dis; non-cmpty sets. By assumption, $\phi \& x$. By (AC), Here exists a choice function f s.t. $\forall x \in X \quad f(x) \in x$. We then consider as our candidate choice set $C=f(x)$. Ferall $x \in x$ we have $f(x) \cap x \neq \phi$, since $f(x) \in x$. Suppose by contradiction that $f(x) \cap x \not \approx\{f(x)$?, ie. There exists a $z \in f(x) \cap x^{(1)}, \quad z \neq f(x)$. Since $z \in f(x)$ $z=f(y)$ for see $y \in X$. But then we knew that $f(y) \in y^{(2)}$ since f is a dice function. By (1) and (2) we get $f(y) f x \cap y$, which is a contradiction since by assumption $\forall x, y \in x, \quad x n y=\phi$
ϵ^{n} Let S be a family of rouempty sets. Consider the set $X=\{ \} x \geqslant \times x, x \in S\}$. Since $x \neq \phi \quad t x \in S, \phi \notin X$. Also, the elements of x are pairwise ohs; int let $\{x\} x x$, $1 y\} \times y \in X$, then $3 x 2 \times x \cap\{y\} \times y=\phi$ since $x \neq y \quad \forall x, y \in S$ (by extensionality) we then apply $(A C S)$ to $X: \exists$ a choice set Y s.t. $\forall 1 x\} \times x \in X$ $|\ln | x k \times x \mid=1$, furthermere $\ln 3 x+x x=\left(x, x^{\prime}\right)$ where $x^{\prime} \in x$. Then define the map f sot. $\forall x=5$ $f(x)=x^{\prime}$, where $x^{\prime}=\ell \cap\{x\} \times x$. By construction, f is functional and it is a chair function for S.

