Homework Sheet #5

MasterMath: Set Theory 2021/22: 1st Semester K. P. Hart, Steef Hegeman, Benedikt Löwe, Robert Paßmann

Deadline for Homework Set #5: Monday, 18 October 2021, 2pm. Please hand in via the elo webpage as a single pdf file.

(17) Suppose α and β are ordinals and define $F(\beta, \alpha) := \{f : \beta \to \alpha; \text{ for all but finitely} many <math>\gamma \in \beta, f(\gamma) = 0\}$ Define an order \prec on $F(\beta, \alpha)$ by

 $f \prec g : \iff f(\mu) < g(\mu)$ where $\mu := \max\{\gamma \in \beta; f(\gamma) \neq g(\gamma)\}.$

Show that $(F(\beta, \alpha), \prec) \cong (\alpha^{\beta}, \in)$.

- (18) Let x and y be elements of the cumulative hierarchy (therefore, their Mirimanoff rank is defined) and let $\rho(x) = \alpha$ and $\rho(y) = \beta$. Determine the Mirimanoff rank of P(x), $\bigcup x, (x, y)$, and $x \times y$. Prove your claims.
- (19) Let α be an ordinal. Show that $(\mathbf{V}_{\alpha}, \in)$ is a model of the axioms of Extensionality and Foundation.
- (20) Let α be an ordinal. Show that the following three statements are equivalent:
 - (i) For all $\beta < \alpha$, there is no bijection between α and β .
 - (ii) For all $\beta < \alpha$, there is no injection from α into β .
 - (iii) For all $\beta < \alpha$, there is no surjection from β onto α .