

Ontdok allos ovor huarken 1 1

-om

Exercise 18

We'll determine the rank of P(x), $\bigcup x$, $\{x, y\}$ and $x \times y$.

Proposition. Let $\varrho(x) = \alpha$. Then $\varrho(P(x)) = \alpha + 1$.

Proof. As $\varrho(x) = \alpha$ we know x first appears in $V_{\alpha+1}$. So all elements of x are in V_{α} , and thus all subsets of x are in $V_{\alpha+1}$. Some might have been there before, but at least x itself was not. So then we see that P(x) first appears in $V_{\alpha+2}$. Hence, $\varrho(P(x)) = \alpha + 1$.

Proposition. Let $\varrho(x) = \alpha$. Then $\varrho(\bigcup x) = \alpha$ if α a limit ordinal and $\varrho(\bigcup x) = \alpha - 1$ otherwise.

Proof. Suppose $\alpha = 0$, so $\varrho(x) = 0$. Then $x \in V_1$, and thus $x = \emptyset$. But then $\bigcup x = \emptyset$. So also $\varrho(\bigcup x) = 0$.

So now suppose $\alpha > 0$ is a successor ordinal. Then say $\alpha = \delta + 1$. All elements of x first appear together in V_{α} . So all their elements first appear together in V_{δ} . So then clearly $\bigcup x$ first appears in $V_{\delta+1} = V_{\alpha}$. Hence, $\varrho(\bigcup x) = \delta = \alpha - 1$.

Now suppose that $\alpha > 0$ is a limit ordinal. Then x first appears in $V_{\alpha+1}$, and thus all elements of x first appear in V_{α} . So there is no no $\beta < \alpha$ such that all elements of elements of x are in V_{β} . For otherwise, all elements of x would be in $V_{\beta+1}$ and thus x would be in $V_{\beta+2}$. Hence, all elements of elements also first appear in V_{α} . So we see that $\bigcup x$ first appears in $V_{\alpha+1}$, i.e. $\varrho(\bigcup x) = \alpha$. \Box

Proposition. Let $\varrho(x) = \alpha, \varrho(y) = \beta$. Then $\varrho(\{x, y\}) = max(\alpha, \beta) + 1$.

Proof. As $\varrho(x) = \alpha$ and $\varrho(y) = \beta$ we know that $\delta = max(\alpha, \beta)$ is the least ordinal such that $x, y \in V_{\delta+1}$. So then by construction $\{x, y\}$ first appears in $V_{\delta+2}$. Hence $\varrho(\{x, y\}) = \delta + 1 = max(\alpha, \beta) + 1$.

Proposition. Let $\varrho(x) = \alpha, \varrho(y) = \beta$. Then $\varrho(x \times y) = max(\alpha, \beta) + 2$.

Proof. By the lecture notes we know that $x \times y \subseteq P(P(\bigcup\{x, y\}))$. By previous results we know that $\varrho(\{x, y\}) = max(\alpha, \beta) + 1$. And as that is not zero we see that $\varrho(\bigcup\{x, y\}) = max(\alpha, \beta)$. And thus $\varrho(P(P(\bigcup\{x, y\}))) = max(\alpha, \beta) + 2$. So $P(P(\bigcup\{x, y\}))$ first appears in $V_{max(\alpha, \beta)+3}$, and thus all of its elements first appear together in $V_{max(\alpha, \beta)+2}$. In particular, all elements of the form $\{a, \{a, b\}\}$ for $a \in x$ and $b \in y$ first appear in $V_{max(\alpha, \beta)+2}$. And thus $x \times y$ first appears in $V_{max(\alpha, \beta)+3}$, i.e. $\varrho(x \times y) = max(\alpha, \beta) + 2$.

Exercise 19

Proposition. Let α be an ordinal. Then (V_{α}, \in) is a model of the axioms of Extensionality and Foundation.

Proof. We work in the axiom system ZF. Let α be some ordinal.

- Extensionality: It is to show that $(V_{\alpha}, \in) \models Ext$, so that $\forall x, y(\forall z(z \in x \leftrightarrow z \in y) \leftrightarrow x = y)$ holds relativized over V_{α} . In other words, it should hold that $\forall x, y \in V_{\alpha}(\forall z \in V_{\alpha}(z \in x \leftrightarrow z \in y) \leftrightarrow x = y)$. So suppose that it does not hold, then there are $x, y \in V_{\alpha}$ such that $\forall z \in V_{\alpha}(z \in x \leftrightarrow z \in y)$ but $x \neq y$. So by Extensionality we know that without loss of generality, there is some z such that $z \in x$ and $z \notin y$. By construction of the hierarchy we know that all elements of x appear in some V_{β} with $\beta \leq \alpha$. So then by a lemma from the lecture we see that $V_{\beta} \subseteq V_{\alpha}$. So there is some V_{β} such that $z \in V_{\beta}$ and $\beta \leq \alpha$, and thus $z \in V_{\alpha}$. But this is in contradiction with $\forall z \in V_{\alpha}(z \in x \leftrightarrow z \in y)$. Hence, $(V_{\alpha}, \in) \models Ext$.
- Foundation: It is to show that $\forall x \in V_{\alpha} (x \neq \emptyset \to \exists m \in V_{\alpha} (m \in x \land m \cap x = \emptyset))$. Suppose this fails, then there is a non-empty $x \in V_{\alpha}$ such that $\forall m \in V_{\alpha}$ with $m \in x$ we have $m \cap x \neq \emptyset$. As $x \in V_{\alpha}$ we see by transitivity of V_{α} that also the elements of x are in V_{α} . So by Foundation we know there is some $m \in x$ with $m \cap x = \emptyset$. But then we see that $m \in V_{\alpha}$, so we actually do have an $m \in V_{\alpha}$ such that $m \in x \land m \cap x = \emptyset$. A contradiction, so we see that indeed $(V_{\alpha}, \in) \vDash$ Foundation.

Exercise 20

Proposition. For α an ordinal, the following are equivalent:

- i) For all $\beta < \alpha$, there is no bijection between α and β .
- *ii)* For all $\beta < \alpha$, there is no injection from α into β .
- iii) For all $\beta < \alpha$, there is no surjection from β onto α .

Proof. Several cases are trivial. If there is no surjection from β onto α , or no injection from α into β , then clearly there is no bijection between them. So we have $ii \Rightarrow i$ and $iii \Rightarrow i$. Now we'll show $ii \Rightarrow iii$ and $i \Rightarrow ii$ and we are done.

• ii) \Rightarrow iii): Suppose iii) does not hold. Then there is some $\beta < \alpha$ such that there is a surjection f from β onto α . So for each $x \in \alpha$ there is a $y \in \beta$ such that f(y) = x. Note that there might be more than one such y. Now define $g: \alpha \to \beta$ as $f(y) \mapsto y$ for $y \in \beta$. This might not be functional, so we let g' be similar to g, but we pick just one element to map to for each $x \in \alpha$. This is well-defined as f was surjective. So now we see that we have an injection from α into β . Hence, *ii*) does not hold.

 $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$ $g: \alpha \to \delta$. Hence, i) does not hold.

