\&.... collegeblok
(17) $F(\beta, \alpha):=\{f: \beta \rightarrow \alpha$; For call but finitely many $\gamma \in \beta$ f $f(\gamma)=0\}$

$$
\begin{aligned}
& \alpha):=\left\{f: \beta \rightarrow \alpha ; \text { for all but } \max _{\text {fin }}\{\gamma \in \beta ; f(\gamma) \neq g(\gamma)\}\right. \\
& f<g \Leftrightarrow f(\mu)<g(\mu) \cong \mu:=\beta \in(\alpha) \text {. }
\end{aligned}
$$

To show: $(F(\alpha, \beta), \alpha) \cong\left(\alpha^{\beta}, \epsilon\right)$.

- Let for any $f \in F(\beta, \alpha)$

$$
\begin{aligned}
& \text { for any f } \left.\mathcal{F}_{1}:=(\beta, \alpha), \alpha\right) \\
& \gamma_{1}=\max \left\{\gamma \in \beta_{3} ; f(\gamma) \neq 0\right\} \\
& \gamma=\operatorname{lax}\left\{\gamma \in \beta ; \gamma \neq \gamma_{1} \text { and } f\left(\gamma_{2}\right) \neq 0\right\} \\
& \text { and so forth: }
\end{aligned}
$$

finitely many $r \in \beta$ s t. $f(\gamma) \neq 0$, so for any A only one obtains a finite sequence $\gamma_{1}, \gamma_{2}, \gamma_{n}$ Now consider the function

I claim this function is order preserving and bijective

- Order preserving: Suppose $f \& g$, so $f(\mu)<g(\mu)$.
- $f(\mu)=0$. Then as $h(g)$ has a factor $\alpha \mu \cdot g(\mu)$ and f does not, as all larger factors are the same $\quad h(f) \in h(g)$.
- $f(\mu) \neq 0$. Then α^{μ}.f $f(\mu) \in \alpha^{\mu} g(\mu)$ as $f(\mu)<g(\mu)$ so as all larger factors are the same $h(f) \in h(g)$.
(Suppose $H=\gamma_{k}$. then $\alpha^{\gamma_{k}} f\left(\gamma_{i}\right)+\ldots+\alpha^{\gamma_{n}} f\left(\gamma_{n}\right) \in \alpha^{\gamma_{k}} g\left(\gamma_{k}\right)$)
- It abo follows from the above that h is infective A s if $f \neq q$, then w.l.o. y $f<g$ so $h(f) \in h(g)$ and $h(f) \neq h(g)$.
- Surjective: Toke any $x \in \alpha^{s}$, we can write it in cantor normal form: (the 2.26 Jech)
e^{α} Now take $f: k_{\beta} \rightarrow \alpha+\alpha^{\gamma_{2}} \cdot k_{1}+\ldots \cdot k_{n}$ given $^{\gamma_{n}} \quad f(\gamma)=k_{i}$ and $f(\gamma)=0$ if $\gamma \neq \gamma$ for some $(\gamma)=k i$ $h(f)=x$.
- Thus $h: F(\alpha . \beta) \rightarrow \alpha^{\beta}$ is bijective and order preserving. Thun $(F(\alpha, \beta)<) \cong\left(a^{\beta}, \epsilon\right)$.
* Recall that Le have shown GI 3 that we can use base α

Exercise 18

We'll determine the rank of $P(x), \bigcup x,\{x, y\}$ and $x \times y$.
Proposition. Let $\varrho(x)=\alpha$. Then $\varrho(P(x))=\alpha+1$.
Proof. As $\varrho(x)=\alpha$ we know x first appears in $V_{\alpha+1}$. So all elements of x are in V_{α}, and thus all subsets of x are in $V_{\alpha+1}$. Some might have been there before, but at least x itself was not. So then we see that $P(x)$ first appears in $V_{\alpha+2}$. Hence, $\varrho(P(x))=\alpha+1$.

Proposition. Let $\varrho(x)=\alpha$. Then $\varrho(\bigcup x)=\alpha$ if α a limit ordinal and $\varrho(\bigcup x)=$ $\alpha-1$ otherwise.

Proof. Suppose $\alpha=0$, so $\varrho(x)=0$. Then $x \in V_{1}$, and thus $x=\emptyset$. But then $\bigcup x=\emptyset$. So also $\varrho(\bigcup x)=0$.

So now suppose $\alpha>0$ is a successor ordinal. Then say $\alpha=\delta+1$. All elements of x first appear together in V_{α}. So all their elements first appear together in V_{δ}. So then clearly $\bigcup x$ first appears in $V_{\delta+1}=V_{\alpha}$. Hence, $\varrho(\bigcup x)=\delta=\alpha-1$.

Now suppose that $\alpha>0$ is a limit ordinal. Then x first appears in $V_{\alpha+1}$, and thus all elements of x first appear in V_{α}. So there is no no $\beta<\alpha$ such that all elements of elements of x are in V_{β}. For otherwise, all elements of x would be in $V_{\beta+1}$ and thus x would be in $V_{\beta+2}$. Hence, all elements of elements also first appear in V_{α}. So we see that $\bigcup x$ first appears in $V_{\alpha+1}$, i.e. $\varrho(\bigcup x)=\alpha$.

Proposition. Let $\varrho(x)=\alpha, \varrho(y)=\beta$. Then $\varrho(\{x, y\})=\max (\alpha, \beta)+1$.
Proof. As $\varrho(x)=\alpha$ and $\varrho(y)=\beta$ we know that $\delta=\max (\alpha, \beta)$ is the least ordinal such that $x, y \in V_{\delta+1}$. So then by construction $\{x, y\}$ first appears in $V_{\delta+2}$. Hence $\varrho(\{x, y\})=\delta+1=\max (\alpha, \beta)+1$.

Proposition. Let $\varrho(x)=\alpha, \varrho(y)=\beta$. Then $\varrho(x \times y)=\max (\alpha, \beta)+2$.
Proof. By the lecture notes we know that $x \times y \subseteq P(P(\bigcup\{x, y\}))$. By previous results we know that $\varrho(\{x, y\})=\max (\alpha, \beta)+1$. And as that is not zero we see that $\varrho(\bigcup\{x, y\})=\max (\alpha, \beta)$. And thus $\varrho(P(P(\bigcup\{x, y\})))=\max (\alpha, \beta)+2$. So $P(P(\bigcup\{x, y\}))$ first appears in $V_{\max (\alpha, \beta)+3}$, and thus all of its elements first appear together in $V_{\max (\alpha, \beta)+2}$. In particular, all elements of the form $\{a,\{a, b\}\}$ for $a \in x$ and $b \in y$ first appear in $V_{\max (\alpha, \beta)+2}$. And thus $x \times y$ first appears in $V_{\max (\alpha, \beta)+3}$, i.e. $\varrho(x \times y)=\max (\alpha, \beta)+2$.

Exercise 19

Proposition. Let α be an ordinal. Then $\left(V_{\alpha}, \in\right)$ is a model of the axioms of Extensionality and Foundation.

Proof. We work in the axiom system ZF. Let α be some ordinal.

- Extensionality: It is to show that $\left(V_{\alpha}, \in\right) \vDash$ Ext, so that $\forall x, y(\forall z(z \in x \leftrightarrow$ $z \in y) \leftrightarrow x=y$) holds relativized over V_{α}. In other words, it should hold that $\forall x, y \in V_{\alpha}\left(\forall z \in V_{\alpha}(z \in x \leftrightarrow z \in y) \leftrightarrow x=y\right)$. So suppose that it does not hold, then there are $x, y \in V_{\alpha}$ such that $\forall z \in V_{\alpha}(z \in x \leftrightarrow z \in y)$ but $x \neq y$. So by Extensionality we know that without loss of generality, there is some z such that $z \in x$ and $z \notin y$. By construction of the hierarchy we know that all elements of x appear in some V_{β} with $\beta \leq \alpha$. So then by a lemma from the lecture we see that $V_{\beta} \subseteq V_{\alpha}$. So there is some V_{β} such that $z \in V_{\beta}$ and $\beta \leq \alpha$, and thus $z \in V_{\alpha}$. But this is in contradiction with $\forall z \in V_{\alpha}(z \in x \leftrightarrow z \in y)$. Hence, $\left(V_{\alpha}, \in\right) \vDash$ Ext.
- Foundation: It is to show that $\forall x \in V_{\alpha}\left(x \neq \emptyset \rightarrow \exists m \in V_{\alpha}(m \in x \wedge m \cap x=\right.$ $\emptyset)$). Suppose this fails, then there is a non-empty $x \in V_{\alpha}$ such that $\forall m \in V_{\alpha}$ with $m \in x$ we have $m \cap x \neq \emptyset$. As $x \in V_{\alpha}$ we see by transitivity of V_{α} that also the elements of x are in V_{α}. So by Foundation we know there is some $m \in x$ with $m \cap x=\emptyset$. But then we see that $m \in V_{\alpha}$, so we actually do have an $m \in V_{\alpha}$ such that $m \in x \wedge m \cap x=\emptyset$. A contradiction, so we see that indeed $\left(V_{\alpha}, \in\right) \vDash$ Foundation.

Exercise 20

Proposition. For α an ordinal, the following are equivalent:
i) For all $\beta<\alpha$, there is no bijection between α and β.
ii) For all $\beta<\alpha$, there is no injection from α into β.
iii) For all $\beta<\alpha$, there is no surjection from β onto α.

Proof. Several cases are trivial. If there is no surjection from β onto α, or no injection from α into β, then clearly there is no bijection between them. So we have $i i) \Rightarrow i$) and $i i i) \Rightarrow i$). Now we'll show $i i) \Rightarrow i i i)$ and $i) \Rightarrow i i$) and we are done.

- $i i) \Rightarrow$ iii): Suppose $i i i$) does not hold. Then there is some $\beta<\alpha$ such that there is a surjection f from β onto α. So for each $x \in \alpha$ there is a $y \in \beta$ such that $f(y)=x$. Note that there might be more than one such y. Now define $g: \alpha \rightarrow \beta$ as $f(y) \mapsto y$ for $y \in \beta$. This might not be functional, so we let g^{\prime} be similar to g, but we pick just one element to map to for each $x \in \alpha$. This is well-defined as was surjective. So now we see that we have an injection from α into β. Hence, $i i$) does not hold.
do
- $i) \Rightarrow i i$: Now suppose that $i i$) does not hold, so there is some $\beta<\alpha$ such that there is an injection $f: \alpha \rightarrow \beta$. Let $r:=\operatorname{ran}(f)$, so then $r \subseteq \beta$. As β is wellordered by \in, so is r. Hence, by the Representation Theorem there is some ordinal δ such that $(r, \in) \cong(\delta, \in)$. Clearly, $\delta<\beta$. And as $f: \alpha \rightarrow \beta$ is an injection, $f: \alpha \rightarrow r$ is a bijection. So there is a bijection $g: \alpha \rightarrow \delta$. Hence, i) does not hold.

