Homework Sheet \#4

Deadline for Homework Set \#4: Monday, 11 October 2021, 2pm. Please hand in via the elo webpage as a single pdf file.
(14) Work in FST. Let $\mathbf{X}_{1}:=\left(X_{1},<_{1}\right)$ and $\mathbf{X}_{2}:=\left(X_{2},<_{2}\right)$ be two strict total orders (i.e., irreflexive, transitive, and total relations). On the set $X_{1} \times X_{2}$, we define two relations by

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right)<_{0}\left(x_{1}^{\prime}, x_{2}^{\prime}\right): \Longleftrightarrow x_{1}<_{1} x_{1}^{\prime} \vee\left(x_{1}=x_{1}^{\prime} \wedge x_{2}<_{2} x_{2}^{\prime}\right) \text { and } \\
& \left(x_{1}, x_{2}\right)<_{\square}\left(x_{1}^{\prime}, x_{2}^{\prime}\right): \Longleftrightarrow x_{1}<_{1} x_{1}^{\prime} \wedge x_{2}<_{2} x_{2}^{\prime},
\end{aligned}
$$

and define two product operations $\mathbf{X}_{1} \otimes \mathbf{X}_{2}=\left(X_{1} \times X_{2},<_{0}\right)$ and $\mathbf{X}_{1} \boxtimes \mathbf{X}_{2}=\left(X_{1} \times X_{2},<_{\square}\right)$. Only one of the two produces in general a strict total order. Which one? What properties does the other one have?
In (13), you proved preservation of wellfoundedness for the operation \oplus. Can you show the same for the operation preserving strict total orders? If not, what are the exceptional cases?
(15) In class, we proved that in wellorders $\mathbf{W}=(W,<)$ every proper initial segment is of the form $<[w]:=\{v \in W ; v<w\}$ for some $w \in W$. Show that this property characterises wellorders. Please state precisely what you are proving and then provide a proof.
(16) Prove the following properties of ordinal arithmetic (in the following, α, β, and γ are ordinals):
(a) $\alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma$.
(b) $\alpha^{\beta+\gamma}=\alpha^{\beta} \cdot \alpha^{\gamma}$.
(c) If $\alpha \leq \beta$, then $\alpha+\gamma \leq \beta+\gamma$.
(d) If $\alpha<\beta$, then $\gamma+\alpha<\gamma+\beta$.
(e) If $\alpha \leq \beta$, then $\alpha \cdot \gamma \leq \beta \cdot \gamma$.
(f) If $\alpha<\beta$ and $\gamma \neq 0$, then $\gamma \cdot \alpha<\gamma \cdot \beta$.

The strict versions of (c) and (e) do not hold in general: give counterexamples.

