
Exercise 14.
We begin with ⊗. Let us see if it has the properties of strict total orders:

• Irreflexive. Let (x1, x2) ∈ X1 × X2 and assume that (x1, x2) <◦ (x1, x2).
There are two possibilites, x1 <1 x1, absurd since <1 is irreflexive and
x1 = x1, x2 <2 x2, absurd since <2 is also irreflexive.
• Transititivy. Let (x1, x2) <◦ (x′1, x

′
2) <◦ (x′′1 , x

′′
2). Now we can separate in

various cases:
– x1 <1 x′1 <1 x′′1 then by transitivity of <1, x1 <1 x′′1 so (x1, x2) <◦

(x′′1 , x
′′
2).

– x1 <1 x′1 = x′′1 and x′2 <2 x′′2 . Then x1 <1 x′′1 so (x1, x2) <◦ (x′′1 , x
′′
2).

– x1 = x′1 < x′′1 and x2 < x′2. Analogous to previous case.
– x1 = x′1 = x′′1 and x2 <2 x′2 <2 x′′2 . Then x1 = x′′1 and thanks to

transitivity of <2 then x2 <2 x′′2 so (x1, x2) <◦ (x′′1 , x
′′
2).

• Totalness. Let (x1, x2), (x′1, x
′
2). Since <1 is total we have three cases:

– x1 <1 x′1, then (x1, x2) <◦ (x′1, x
′
2).

– x′1 <1 x1, analogous.
– x1 = x′1, then we can again do three cases since <2 is total and we will

get that (x1, x2) and (x′1, x
′
2) are equal or related.

Now for � note that it is clearly irreflexive (if one of <1 or <2 is irreflexive).
Transitivity is also true since (x1, x2) <� (x′1, x

′
2) <� (x′′1 , x

′′
2) so x1 <1 x′1 <1 x′′1

so by tansitivity x1 <1 x′′1 , similarly x2 <2 x′′2 so we get (x1, x2) <� (x′′1 , x
′′
2).

However we are going to check that it is not total. Consider (N, <)� (N, <) and let
(0, 1), (1, 0) ∈ N. Then (0, 1) 6<� (1, 0) since 1 6 0 but (1, 0) 6<� (0, 1) by the same
reason. But also (0, 1) 6= (1, 0) so we conclude that <� is not total.

Finally let us prove that ⊗ preserves wellfoundedness. Let A ⊆ X1 × X2 non-
empty. Consider the set A1 = {x1 ∈ X1 | ∃x2.(x1, x2) ∈ A}, since A is not empty,
neither A1 is. And since <1 is wellfounded let x′1 be a minimal element for A1.
Now define A2 = {x2 ∈ X2 | (x′1, x2) ∈ A}, it is clear that it is nonempty so thanks
to wellfoundedness of <2 it has a minimal element, let it be x′2. Clearly (x′1, x

′
2)

is in A, and image that there is (x′′1 , x
′′
2) ∈ A such that (x′′1 , x

′′
2) < ◦(x′1, x′2), then

there are two possibilities:

• x′′1 <1 x′1, impossible since clearly x′′1 ∈ A1 and x′1 is minimal.
• x′′1 = x′1 and x′′2 < x′2, impossible since then x′′2 ∈ A2 (thanks to x′′1 = x′1)

and x′2 is minimal.

Since both cases are impossible we conclude that there is no such that (x′′1 , x
′′
2) and

so (x′1, x
′
2) is minimal.
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Exercise 15.

Lemma. Let (W,<) be a strict total order such that for every proper initial segment
I there is a w ∈ W with I = <[w]. Then < is wellfounded, i.e. (W,<) is a
wellorder.

Proof. We proceed by contraposition. So assume that (W,<) is not a wellorder, so
there is a nonempty subset X ⊆ W with no minimal element. Now we consider
the set I = {w ∈ W | ∀x ∈ X.w < x}. First note that this is an initial segment
since given y ∈ I and z < y given x ∈ X, z < y < x and by transitivity z < x,
so x ∈ I. It is also proper, thanks to irreflexivity and that X was not empty, so
there is x ∈ X and x 6< x. Now we want to show that there is no w ∈ W such
that I = <[w] so assume that there is such a w a we will proof a contradiction.
First we prove that w ∈ X. Clearly ¬∃x ∈ X.x < w (since otherwise x ∈ I and
that would imply x < x) so thanks to < being total we have that ∀x ∈ X.w ≤ x.
Now by R.A. assume that w 6∈ X then ∀x ∈ X.w < x and so w ∈ I = <[w], i.e.
w < w absurd by irreflexivity. So we conclude that w ∈ X, but as we said earlier
¬∃x ∈ X.x < w, i.e. w is minimal contrary to the hypothesis that X does not have
a minimal element. So we conclude that such a w does not exist as wanted. �
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Exercise 16

In this exercise I will use several lemmas that I will prove first.

Lemma 1. For all ordinals α, we have 0 + α = α.

Proof. We prove this by transfinite induction on α.

• Suppose α = 0. Then we see that 0 + 0 = 0 = α.

• Now suppose it holds for α, so 0 + α = α. Then 0 + s(α) = s(0 + α) =IH

s(α).

• Suppose α is a limit ordinal and for all δ < α we have 0 + δ = δ. Now
0 + α =

⋃{0 + δ; δ ∈ α} =IH

⋃{δ; δ ∈ α} = α.

Lemma 2. For all ordinals α, β, γ, we have (α · β) · γ = α · (β · γ).

Proof. Let α, β be arbitrary ordinals. Then we prove the lemma by transfinite
induction on γ.

• Suppose γ = 0. Then (α · β) · 0 = 0 = α · 0 = α · (β · 0).

• Now suppose that it holds for γ, so (α·β)·γ = α·(β ·γ). Then (α·β)·s(γ) =
(α · β) · γ + α · β =IH= α · (β · γ) + α · β. And by the previous lemma we
see that α · (β · γ) + α · β = α(β · γ + β) = α · (β · s(γ)).

• Suppose that γ is a limit ordinal and for all δ < γ we have (α · β) · δ =
α · (β · δ). Then (α · β) · γ =

⋃{(α · β) · δ; δ ∈ γ} =IH

⋃{α · (β · δ); δ ∈
γ} =

⋃{α · η; η ∈ β · γ} = α · (β · γ).

Lemma 3. For all ordinals α, β, γ, we have (α+ β) + γ = α+ (β + γ)

Proof. Let α, β be arbitrary ordinals. Then we prove the lemma by transfinite
induction on γ.

• Suppose γ = 0. Then (α+ β) + 0 = α+ β = (α+ 0) + β.

• Now suppose that it holds for γ, so (α + β) + γ = α + (β + γ). Then
(α + β) + s(γ) = s((α + β) + γ) =IH s(α + (β + γ)) = α + s(β + γ) =
α+ (β + s(γ)).

Suppose γ is a limit ordinal and for all δ < γ we have (α + β) + δ =
α + (β + δ). Then we have (α + β) + γ =

⋃{(α + β) + δ; δ ∈ γ} =IH⋃{α+ (β + δ); δ ∈ γ} =
⋃{α+ η; η ∈ β + γ} = α+ (β + γ).
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a)

Proposition. For α, β, γ ordinals, we have α · (β + γ) = α · β + α · γ.

Proof. Let α, β be arbitrary ordinals and do a proof by transfinite induction on
γ.

• Suppose γ = 0. Then we have α · (β+0) = α+β = α ·β+0 = α ·β+α ·0.

• Now suppose it holds for γ, so α · (β + γ) = α · β + α · γ. Then we have
α·(β+s(γ)) = α·s(β+γ) = α·(β+γ)+α =IH α·β+α·γ+α = α·β+α·s(γ).

• Suppose γ is a limit ordinal and for all δ < γ we have α·(β+δ) = α·β+α·δ.
Then we have α · (β+γ) = α ·⋃{β+ δ; δ ∈ γ} =

⋃{α · (β+ δ); δ ∈ γ} =IH⋃{α · β + α · δ; δ ∈ γ} =
⋃{α · β + η; η ∈ α · γ} = α · β + α · γ

b)

Proposition. For α, β, γ ordinals, we have αβ+γ = αβ · αγ .

Proof. Let α, β be arbitrary ordinals and do transfinite induction on γ.

• Suppose γ = 0. Then we have αβ+0 = αβ . And by the first lemma we
know that αβ = 0 + αβ . So then we see that 0 + αβ = αβ · 0 + αβ =
αβ · s(0) = αβ · 1 = αβ · α0.

• Suppose it holds for γ, so αβ+γ = αβ · αγ . Then we have αβ+s(γ) =
αs(β+γ) = αβ+γ ·α =IH (αβ ·αγ) ·α. So by the second lemma we see that
(αβ · αγ) · α = αβ · (αγ · α) = αβ · αs(γ).

• Now suppose that γ is a limit ordinal and for all δ < γ we have αβ+δ =
αβ · αδ. Then we have αβ+γ =

⋃{αη; η ∈ β + γ} =
⋃{αβ+δ; δ ∈ γ} =IH⋃{αβ · αδ; δ ∈ γ} = αβ · αγ .

c)

Proposition. For all α, β, γ ordinals, we have if α ≤ β, then α+ γ ≤ β + γ.

Proof. Let α, β be arbitrary ordinals and do transfinite induction on γ.

• Suppose γ = 0. Then we have α + 0 = α and β + 0 = β. So by our
assumption it directly follows that α+ 0 ≤ β + 0.

• Suppose it holds for γ, so we have α+γ ≤ β+γ. Then α+s(γ) = s(α+γ)
and β + s(γ) = s(β + γ). So as s is order preserving we see that it follows
from the induction hypothesis that α+ s(γ) ≤ β + s(γ).
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• Now suppose that γ is a limit ordinal and that for all δ < γ we have that if
α+ δ ≤ β+ δ. Then α+γ =

⋃{α+ δ; δ ∈ γ} and β+γ =
⋃{β+ δ; δ ∈ γ}.

So if we can show that the former is a subset of the latter we have the
needed result.

So suppose that x ∈ ⋃{α+ δ; δ ∈ γ}, then x is of the form α+ δ for some
δ ∈ γ. But then by the induction hypothesis we have α+δ ≤ β+δ and thus
α+δ ⊆ β+δ. If α+δ = β+δ, then clearly x = α+δ ∈ ⋃{β+δ; δ ∈ γ}. So
suppose α+ δ ⊂ β+ δ. Then by lemma 2.11 iii) we have α+ δ ∈ β+ δ. So
then α+δ ∈ ⋃{β+δ; δ ∈ γ} by definition of union. So indeed α+γ ⊆ β+γ
and thus α+ δ ≤ β + γ.

Now if we consider the strict version of this statement we get:

If α < β, then α+ γ < β + γ.

But if we let α = 0, β = 1 and γ = ω. Then we see that clearly α < β. But as
α+ γ = ω and β + γ = ω. Hence we do not have α+ γ < β + γ.

d)

Proposition. For α, β, γ ordinals, if α < β, then γ + α < γ + β.

Proof. Let α, γ be arbitrary ordinals and do transfinite induction on β.

• Suppose β = 0. Then α < 0, which cannot be the case. So β ̸= 0.

• Now suppose it holds for β, so if α < β then γ + α < γ + β. Assume that
α < s(β), then we have α = β or α < β.

– α = β: Then γ + α = γ + β < s(γ + β) = γ + s(β) as each ordinal is
strictly smaller than its successor.

– α < β: Then by the induction hypothesis we have that γ+α < γ+β.
But again γ + β < γ + s(β). And thus γ + α < γ + s(β).

• Now suppose that β is a limit ordinal and for all δ < β we have that if
α < δ, then γ + α < γ + δ. So then we see that as α < β we get that
there is a δ such that α < δ < β. So then by the induction hypothesis
γ + α < γ + δ ≤ ⋃{γ + δ; δ ∈ β} = γ + β.

e)

Proposition. For α, β, γ ordinals, if α ≤ β, then α · γ ≤ β · γ.
Proof. Let α, β be arbitrary ordinals and do transfinite induction on γ.

• Suppose γ = 0. Now α · 0 = 0 = β · 0. So clearly α · 0 ≤ β · 0.
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• Now suppose it holds for γ, so α · γ ≤ β · γ. As α ≤ β, we have two cases:

– α = β: Then we see that α · s(γ) = β · s(γ).
– α < β: Then by d) we see that α · γ + α < α · γ + β. And then

by the induction hypothesis and c) we see α · γ + β ≤ β · γ + β. So
α · s(γ) = α · γ + α ≤ β · γ + β = β · s(γ).

– Suppose that γ is a limit ordinal and that for all δ < γ we have
α < δ ≤ β · δ. So α · γ =

⋃{α · δ; δ ∈ γ}. And by the induction
hypothesis we have

⋃{α · δ; δ ∈ γ} ≤ ⋃{β · δ; δ ∈ γ} = β · γ. So
α · γ ≤ β · γ.

Now if we consider the strict version of this statement we have

if α < β then α · γ < β · γ

But if we let α = 1, β = 2 and γ = ω. Then we see that α · ω = 1 · ω =⋃{1 · n;n ∈ ω} = ω. And also β · γ = 2 · ω =
⋃{2 · n;n ∈ ω} = ω. So clearly

α < β but α · γ = β · γ and thus not α · γ < β · γ.

Proposition. For all α, β, γ ordinals, if α < β and γ ̸= 0, then γ · α < γ · β.

Proof. Let α, γ be arbitrary ordinals such that γ ̸= 0. Now do transfinite
induction on β.

• Suppose that β = 0. Then α < 0, which cannot happen. So this case does
not occur.

• Now suppose that it holds for β. So if α < β, then γ · α < γ · β. Now
suppose that α < s(β), then either α = β or α < β:

– α = β: Then γ · α = γ · β < γ · s(β) as γ ̸= 0.

– α < β: Then by the induction hypothesis we know that γ ·α < γ · β.
So as γ · s(β) = γ · β + γ and γ ̸= 0 we have γ · α < γ · s(β).

• Suppose that β is a limit ordinal and for all δ ∈ β we have, if α < δ,
then γ · α < γ · β. As α < β, there is a δ such that α < δ < β. So then
γ · α < γ · δ ≤ ⋃{γ · δ; δ ∈ β} = γ · β. So we see that γ · α < γ · β.
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