EXERCISE 14.
We begin with ®. Let us see if it has the properties of strict total orders:

o Irreflexive. Let (z1,22) € X1 X Xo and assume that (z1,22) <o (x1,22).
There are two possibilites, 1 <; x1, absurd since < is irreflexive and
r1 = x1, Ty <9 T2, absurd since <5 is also irreflexive.

e Transititivy. Let (z1,22) <o (2}, 25) <o (27,245). Now we can separate in
various cases:

— x1 <1 2] <1 zf then by transitivity of <1, x1 <1 zf so (z1,72) <o
(2, 23).

— x1 <y 2y =27 and 2}, < 2f. Then x1 <3 2f so (z1,22) <o (2, 25).

— x1 =2} <z and zy < ). Analogous to previous case.

—x =2y = 2f and 29 <o 2 <o 2. Then z; = z{ and thanks to
transitivity of <o then zy <o 4 so (z1,x2) <o (zf,2%).

e Totalness. Let (21, 22), (2], 25). Since <; is total we have three cases:

— x1 <1 o, then (z1,z2) <o (2}, ).

— ) <1 x1, analogous.

— x1 = 2!, then we can again do three cases since < is total and we will
get that (z1,22) and (27, x%) are equal or related.

Now for K note that it is clearly irreflexive (if one of <y or < is irreflexive).
Transitivity is also true since (z1,22) <g (2}, 25) <g («f,2%) so x1 <3z} <1 «f
so by tansitivity z1 <; f, similarly zo <o x4 so we get (z1,z2) <g (2f,2%).
However we are going to check that it is not total. Consider (N, <)X (N, <) and let
(0,1),(1,0) € N. Then (0,1) £ (1,0) since 1 0 but (1,0) £g (0,1) by the same
reason. But also (0, 1) # (1,0) so we conclude that <g is not total.

Finally let us prove that ® preserves wellfoundedness. Let A C X; x X5 non-
empty. Consider the set 41 = {z1 € X7 | Jza.(x1,22) € A}, since A is not empty,
neither 4; is. And since <; is wellfounded let z{ be a minimal element for A;.
Now define A = {zg € X5 | (2], 22) € A}, it is clear that it is nonempty so thanks
to wellfoundedness of < it has a minimal element, let it be z}. Clearly (z, %)
is in A, and image that there is (z{,2%) € A such that (2, 245) < o(z},z%), then
there are two possibilities:

o zf <4 2}, impossible since clearly =7 € A; and 2 is minimal.
o i/ =z} and 2§ < zf, impossible since then 2§ € Ay (thanks to zf = )
and z is minimal.
Since both cases are impossible we conclude that there is no such that (27, %) and
so (), x}) is minimal.
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EXERCISE 15.

Lemma. Let (W, <) be a strict total order such that for every proper initial segment
I there is a w € W with I = <[w]. Then < is wellfounded, i.e. (W,<) is a
wellorder.

Proof. We proceed by contraposition. So assume that (W, <) is not a wellorder, so
there is a nonempty subset X C W with no minimal element. Now we consider
the set I = {w € W | Vo € X.w < z}. First note that this is an initial segment
since given y € I and z < y given z € X, z < y < x and by transitivity z < z,
so x € I. It is also proper, thanks to irreflexivity and that X was not empty, so
there is z € X and x £ . Now we want to show that there is no w € W such
that I = <[w] so assume that there is such a w a we will proof a contradiction.
First we prove that w € X. Clearly =3z € X.z < w (since otherwise z € I and
that would imply z < z) so thanks to < being total we have that Vo € X.w < z.
Now by R.A. assume that w € X then Vo € X.w < z and so w € I = <[w], i.e.
w < w absurd by irreflexivity. So we conclude that w € X, but as we said earlier
-3Jz € X.z < w, i.e. w is minimal contrary to the hypothesis that X does not have
a minimal element. So we conclude that such a w does not exist as wanted. O



Exercise 16

In this exercise I will use several lemmas that I will prove first.
Lemma 1. For all ordinals o, we have 0 + o = «.
Proof. We prove this by transfinite induction on a.

e Suppose a = 0. Then we see that 0 +0 =0 = «.

e Now suppose it holds for «, so 0+ a = . Then 0+ s(a) = s(0 + a) =1y
s(a).

e Suppose « is a limit ordinal and for all § < « we have 0 + 6§ = §. Now

0+a=U{0+d;0€at=m U{5d€al=a
O
Lemma 2. For all ordinals «, 8,7, we have (ac- B) -v=a- (5 -7).

Proof. Let «, 8 be arbitrary ordinals. Then we prove the lemma by transfinite
induction on 7.

e Suppose ¥ =0. Then (- 3)-0=0=a-0=a-(5-0).

e Now suppose that it holds for 7, so (a-3)-7 = a-(8-7). Then (a-f)-s(v) =
(- B) - v+a-f=rg=a-(8-v)+a-B. And by the previous lemma we
see that - (B-v)+a-B=a(f-v+B)=a-(8-s(7)).

e Suppose that v is a limit ordinal and for all § < v we have (a- ) -0 =
a-(8-6). Then (a-pB)-v=U{(a ) 60 €~} =m U{a-(8-0);0 €
V=Ula-mnep - at=a-(8-7).

O
Lemma 3. For all ordinals «, 8,7, we have (o + ) +v=a+ (8+7)

Proof. Let «, B be arbitrary ordinals. Then we prove the lemma by transfinite
induction on 7.

e Suppose ¥y =0. Then (e« + ) +0=a+ = (a+0)+ 3.

e Now suppose that it holds for v, so (« + ) + v = a+ (8 + 7). Then
(a+B)+s(7) =s((@+B)+7) =m s(a+(B+7) =a+s(B+7) =
a+(B+s(7))

Suppose v is a limit ordinal and for all § < v we have (a + ) + 0 =
a+ (B +9). Then we have (o + 8) +v = U{(a + B8) + ;0 € v} =11
UHa+(B+d)idert=Uat+tmneB+yt=a+(B+7)

O



a)
Proposition. For «, 3,v ordinals, we have a- (8 +7) =a- B+ a - 7.

Proof. Let a, 8 be arbitrary ordinals and do a proof by transfinite induction on
.

e Suppose v = 0. Then we have a- (f+0) =a+pf=a-+0=a-F+a-0.

e Now suppose it holds for v, so a- (8+7) = a8+ a-v. Then we have
a-(B+s(y)) = a-s(B+7) = - (B+7)+a =11 a-f+ay+a = a-Bta-s(y).

e Suppose 7 is a limit ordinal and for all § < -y we have a-(8+49) = a-B+a-6.
Then we have a- (B+7v) = a-U{B+6;6 € v} = U{a- (B+0);0 € v} =11
WHa-B+a-d;0eq}=Uf{a-B+mnea-yt=a-F+a-v

O

b)
Proposition. For a, 8,7 ordinals, we have o®t7 = o . a7.
Proof. Let a, 8 be arbitrary ordinals and do transfinite induction on ~.

e Suppose v = 0. Then we have o®T% = o®. And by the first lemma we
know that o® = 0+ of. So then we see that 0 + o = o - 0+ o® =
a? . 5(0)=af-1=0a" a°

e Suppose it holds for v, so aft? = o - @7. Then we have aft5(7) =
Bt = o7 .o =y (o -a”) - a. So by the second lemma we see that
(@ -a") - a=ad’ (a7 a)=af ot

e Now suppose that v is a limit ordinal and for all § < v we have a®t9 =
af - a’. Then we have o*7 = J{a";n € B +~} = U{a? ;6 € v} =11
U{a? - a%6 €v} =af - ar.

O

c)
Proposition. For all a, B,v ordinals, we have if « < 3, then a+v <+ 7.

Proof. Let a, 8 be arbitrary ordinals and do transfinite induction on ~.

e Suppose v = 0. Then we have a +0 = o and f+ 0 = 5. So by our
assumption it directly follows that o+ 0 < 8+ 0.

e Suppose it holds for v, so we have a+~ < B+~. Then a+s(v) = s(a+7)
and B+ s(y) = s(8+ 7). So as s is order preserving we see that it follows
from the induction hypothesis that a + s(y) < 8+ s(7v).



e Now suppose that v is a limit ordinal and that for all § < v we have that if
a+d < B+4. Then a+v = J{a+6;6 € v} and B+~ =U{B+5;5 € v}.
So if we can show that the former is a subset of the latter we have the
needed result.

So suppose that z € [ J{a+ ;9 € v}, then x is of the form « + § for some
0 € 7. But then by the induction hypothesis we have a+4§ < 3+4§ and thus
a+d C f+6. f a+d = B+, then clearly z = a+6 € |J{B8+7;0 € v}. So
suppose a+ 6 C B+ 4. Then by lemma 2.11 iii) we have a+6 € 8+3. So
then a+4 € |J{B+96; 6 € v} by definition of union. So indeed a+~ C S+
and thus a4+ 90 < B8+ 7.

O
Now if we consider the strict version of this statement we get:
Ifa<p, thena+~v<pB+7.

But if we let « = 0,8 = 1 and v = w. Then we see that clearly o < 5. But as
a+v=wand 8+ v =w. Hence we do not have a + v < 8 + 7.
d)
Proposition. For a,3,v ordinals, if a < 3, then v+ a < v+ B.
Proof. Let o,y be arbitrary ordinals and do transfinite induction on f.

e Suppose § =0. Then a < 0, which cannot be the case. So 8 # 0.

e Now suppose it holds for 3, so if « < § then v+ o < v+ . Assume that
a < s(B), then we have a = 8 or a < 3.

—a=p: Theny+a=v+p8 < s(y+ 8) =7+ s(8) as each ordinal is
strictly smaller than its successor.

— « < f: Then by the induction hypothesis we have that y+a < v+ 8.
But again v + 8 < v+ s(8). And thus v+ a < v + s(8).

e Now suppose that 3 is a limit ordinal and for all 6 < 8 we have that if
a < §, then v+ a < v+ 4. So then we see that as a < 8 we get that
there is a ¢ such that @ < § < . So then by the induction hypothesis
Yra<y+d<U{y+d0€pt=7+5

O
e)
Proposition. For «, 8,7 ordinals, if a < 3, then a-y < - 7.

Proof. Let «, 8 be arbitrary ordinals and do transfinite induction on .

e Suppose vy =0. Now a-0=0=-0. So clearly a-0 < - 0.



e Now suppose it holds for v, so a-v < f-v. As a < 8, we have two cases:

— a = 3: Then we see that - s(y) =35 s(v).

— a < f: Then by d) we see that - v+ a < a-v+ 8. And then
by the induction hypothesis and ¢) we see a- v+ 3 < -7+ 8. So
a-s(y)=a-y+a<B-y+8=05-s(7).

— Suppose that v is a limit ordinal and that for all § < v we have
a<d<pB:6. Soa-v=U{a 8 ec~} And by the induction
hypothesis we have |J{a - 6;0 € v} < U{B -0 € v} = B-7. So
a-y< B

O

Now if we consider the strict version of this statement we have
ifa<fBthena-y<pf-v

But if we let « = 1, 8 = 2 and v = w. Then we see that - w =1 -w =
Ul - mynew}=w. Andalso f-v=2-w=J{2 -n;n € w} =w. So clearly
a<pfbuta-y=p0-vand thusnot a-v < fg-7.

Proposition. For all a, B,~ ordinals, if « < f and v # 0, then v-a <~y- .

Proof. Let a,v be arbitrary ordinals such that v # 0. Now do transfinite
induction on f.

e Suppose that = 0. Then o < 0, which cannot happen. So this case does
not occur.

e Now suppose that it holds for 5. So if « < 3, then v-a < v- 3. Now
suppose that a < s(8), then either &« = 8 or a < 3:
—a=p:Theny-a=~v-8<~v-s(p) asy#0.
— « < (: Then by the induction hypothesis we know that v-a < v- .
Soasy-s(B) =~ -8+~ and v # 0 we have v-a < - s(8).

e Suppose that 8 is a limit ordinal and for all § € g we have, if a < 9,
then v-a < v- 8. As a < f3, there is a § such that o < § < . So then
vyoa<y-d<|J{y-6;d€ B} =7 5. Soweseethat v -a <~v-f.

O



