EXercise 14.

We begin with \otimes. Let us see if it has the properties of strict total orders:

- Irreflexive. Let $\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}$ and assume that $\left(x_{1}, x_{2}\right)<_{0}\left(x_{1}, x_{2}\right)$. There are two possibilites, $x_{1}<_{1} x_{1}$, absurd since $<_{1}$ is irreflexive and $x_{1}=x_{1}, x_{2}<_{2} x_{2}$, absurd since $<_{2}$ is also irreflexive.
- Transititivy. Let $\left(x_{1}, x_{2}\right)<_{0}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)<_{0}\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)$. Now we can separate in various cases:
$-x_{1}<_{1} x_{1}^{\prime}<_{1} x_{1}^{\prime \prime}$ then by transitivity of $<_{1}, x_{1}<_{1} x_{1}^{\prime \prime}$ so $\left(x_{1}, x_{2}\right)<_{0}$ $\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)$.
$-x_{1}<_{1} x_{1}^{\prime}=x_{1}^{\prime \prime}$ and $x_{2}^{\prime}<_{2} x_{2}^{\prime \prime}$. Then $x_{1}<_{1} x_{1}^{\prime \prime}$ so $\left(x_{1}, x_{2}\right)<_{0}\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)$.
$-x_{1}=x_{1}^{\prime}<x_{1}^{\prime \prime}$ and $x_{2}<x_{2}^{\prime}$. Analogous to previous case.
$-x_{1}=x_{1}^{\prime}=x_{1}^{\prime \prime}$ and $x_{2}<_{2} x_{2}^{\prime}<_{2} x_{2}^{\prime \prime}$. Then $x_{1}=x_{1}^{\prime \prime}$ and thanks to transitivity of $<_{2}$ then $x_{2}<_{2} x_{2}^{\prime \prime}$ so $\left(x_{1}, x_{2}\right)<_{0}\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)$.
- Totalness. Let $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$. Since $<_{1}$ is total we have three cases:
$-x_{1}<1 x_{1}^{\prime}$, then $\left(x_{1}, x_{2}\right)<_{0}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.
$-x_{1}^{\prime}<{ }_{1} x_{1}$, analogous.
$-x_{1}=x_{1}^{\prime}$, then we can again do three cases since $<_{2}$ is total and we will get that $\left(x_{1}, x_{2}\right)$ and ($x_{1}^{\prime}, x_{2}^{\prime}$) are equal or related.
Now for \boxtimes note that it is clearly irreflexive (if one of $<_{1}$ or $<_{2}$ is irreflexive). Transitivity is also true since $\left(x_{1}, x_{2}\right)<\square\left(x_{1}^{\prime}, x_{2}^{\prime}\right)<\square\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)$ so $x_{1}<_{1} x_{1}^{\prime}<_{1} x_{1}^{\prime \prime}$ so by tansitivity $x_{1}<_{1} x_{1}^{\prime \prime}$, similarly $x_{2}<_{2} x_{2}^{\prime \prime}$ so we get $\left(x_{1}, x_{2}\right)<\square\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)$. However we are going to check that it is not total. Consider $(\mathbb{N},<) \boxtimes(\mathbb{N},<)$ and let $(0,1),(1,0) \in \mathbb{N}$. Then $(0,1) \nless \square(1,0)$ since $1 \not 0$ but $(1,0) \nless \square(0,1)$ by the same reason. But also $(0,1) \neq(1,0)$ so we conclude that $<_{\square}$ is not total.

Finally let us prove that \otimes preserves wellfoundedness. Let $A \subseteq X_{1} \times X_{2}$ nonempty. Consider the set $A_{1}=\left\{x_{1} \in X_{1} \mid \exists x_{2} .\left(x_{1}, x_{2}\right) \in A\right\}$, since A is not empty, neither A_{1} is. And since $<_{1}$ is wellfounded let x_{1}^{\prime} be a minimal element for A_{1}. Now define $A_{2}=\left\{x_{2} \in X_{2} \mid\left(x_{1}^{\prime}, x_{2}\right) \in A\right\}$, it is clear that it is nonempty so thanks to wellfoundedness of $<_{2}$ it has a minimal element, let it be x_{2}^{\prime}. Clearly ($x_{1}^{\prime}, x_{2}^{\prime}$) is in A, and image that there is $\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right) \in A$ such that $\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)<\circ\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, then there are two possibilities:

- $x_{1}^{\prime \prime}<_{1} x_{1}^{\prime}$, impossible since clearly $x_{1}^{\prime \prime} \in A_{1}$ and x_{1}^{\prime} is minimal.
- $x_{1}^{\prime \prime}=x_{1}^{\prime}$ and $x_{2}^{\prime \prime}<x_{2}^{\prime}$, impossible since then $x_{2}^{\prime \prime} \in A_{2}\left(\right.$ thanks to $\left.x_{1}^{\prime \prime}=x_{1}^{\prime}\right)$ and x_{2}^{\prime} is minimal.
Since both cases are impossible we conclude that there is no such that ($x_{1}^{\prime \prime}, x_{2}^{\prime \prime}$) and so $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ is minimal.

Exercise 15.

Lemma. Let $(W,<)$ be a strict total order such that for every proper initial segment I there is a $w \in W$ with $I=<[w]$. Then $<$ is wellfounded, i.e. $(W,<)$ is a wellorder.
Proof. We proceed by contraposition. So assume that $(W,<)$ is not a wellorder, so there is a nonempty subset $X \subseteq W$ with no minimal element. Now we consider the set $I=\{w \in W \mid \forall x \in X . w<x\}$. First note that this is an initial segment since given $y \in I$ and $z<y$ given $x \in X, z<y<x$ and by transitivity $z<x$,
Typo: $z \in I$ so $x \in I$. It is also proper, thanks to irreflexivity and that X was not empty, so there is $x \in X$ and $x \nless x$. Now we want to show that there is no $w \in W$ such that $I=<[w]$ so assume that there is such a w a we will proof a contradiction. First we prove that $w \in X$. Clearly $\neg \exists x \in X . x<w$ (since otherwise $x \in I$ and that would imply $x<x$) so thanks to $<$ being total we have that $\forall x \in X . w \leq x$. Now by R.A. assume that $w \notin X$ then $\forall x \in X . w<x$ and so $w \in I=<[w]$, i.e. $w<w$ absurd by irreflexivity. So we conclude that $w \in X$, but as we said earlier $\neg \exists x \in X . x<w$, i.e. w is minimal contrary to the hypothesis that X does not have a minimal element. So we conclude that such a w does not exist as wanted.

Exercise 16

In this exercise I will use several lemmas that I will prove first.
Lemma 1. For all ordinals α, we have $0+\alpha=\alpha$.
Proof. We prove this by transfinite induction on α.

- Suppose $\alpha=0$. Then we see that $0+0=0=\alpha$.
- Now suppose it holds for α, so $0+\alpha=\alpha$. Then $0+s(\alpha)=s(0+\alpha)={ }_{I H}$ $s(\alpha)$.
- Suppose α is a limit ordinal and for all $\delta<\alpha$ we have $0+\delta=\delta$. Now $0+\alpha=\bigcup\{0+\delta ; \delta \in \alpha\}={ }_{I H} \bigcup\{\delta ; \delta \in \alpha\}=\alpha$.

Lemma 2. For all ordinals α, β, γ, we have $(\alpha \cdot \beta) \cdot \gamma=\alpha \cdot(\beta \cdot \gamma)$.
Proof. Let α, β be arbitrary ordinals. Then we prove the lemma by transfinite induction on γ.

- Suppose $\gamma=0$. Then $(\alpha \cdot \beta) \cdot 0=0=\alpha \cdot 0=\alpha \cdot(\beta \cdot 0)$.
- Now suppose that it holds for γ, so $(\alpha \cdot \beta) \cdot \gamma=\alpha \cdot(\beta \cdot \gamma)$. Then $(\alpha \cdot \beta) \cdot s(\gamma)=$ $(\alpha \cdot \beta) \cdot \gamma+\alpha \cdot \beta={ }_{I H}=\alpha \cdot(\beta \cdot \gamma)+\alpha \cdot \beta$. And by the previous lemma we see that $\alpha \cdot(\beta \cdot \gamma)+\alpha \cdot \beta=\alpha(\beta \cdot \gamma+\beta)=\alpha \cdot(\beta \cdot s(\gamma))$.
- Suppose that γ is a limit ordinal and for all $\delta<\gamma$ we have $(\alpha \cdot \beta) \cdot \delta=$ $\alpha \cdot(\beta \cdot \delta)$. Then $(\alpha \cdot \beta) \cdot \gamma=\bigcup\{(\alpha \cdot \beta) \cdot \delta ; \delta \in \gamma\}={ }_{I H} \bigcup\{\alpha \cdot(\beta \cdot \delta) ; \delta \in$ $\gamma\}=\bigcup\{\alpha \cdot \eta ; \eta \in \beta \cdot \gamma\}=\alpha \cdot(\beta \cdot \gamma)$.

Lemma 3. For all ordinals α, β, γ, we have $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$
Proof. Let α, β be arbitrary ordinals. Then we prove the lemma by transfinite induction on γ.

- Suppose $\gamma=0$. Then $(\alpha+\beta)+0=\alpha+\beta=(\alpha+0)+\beta$.
- Now suppose that it holds for γ, so $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$. Then $(\alpha+\beta)+s(\gamma)=s((\alpha+\beta)+\gamma)={ }_{I H} s(\alpha+(\beta+\gamma))=\alpha+s(\beta+\gamma)=$ $\alpha+(\beta+s(\gamma))$.
Suppose γ is a limit ordinal and for all $\delta<\gamma$ we have $(\alpha+\beta)+\delta=$ $\alpha+(\beta+\delta)$. Then we have $(\alpha+\beta)+\gamma=\bigcup\{(\alpha+\beta)+\delta ; \delta \in \gamma\}={ }_{I H}$ $\bigcup\{\alpha+(\beta+\delta) ; \delta \in \gamma\}=\bigcup\{\alpha+\eta ; \eta \in \beta+\gamma\}=\alpha+(\beta+\gamma)$.
a)

Proposition. For α, β, γ ordinals, we have $\alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma$.
Proof. Let α, β be arbitrary ordinals and do a proof by transfinite induction on γ.

- Suppose $\gamma=0$. Then we have $\alpha \cdot(\beta+0)=\alpha+\beta=\alpha \cdot \beta+0=\alpha \cdot \beta+\alpha \cdot 0$.
- Now suppose it holds for γ, so $\alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma$. Then we have $\alpha \cdot(\beta+s(\gamma))=\alpha \cdot s(\beta+\gamma)=\alpha \cdot(\beta+\gamma)+\alpha={ }_{I H} \alpha \cdot \beta+\alpha \cdot \gamma+\alpha=\alpha \cdot \beta+\alpha \cdot s(\gamma)$.
- Suppose γ is a limit ordinal and for all $\delta<\gamma$ we have $\alpha \cdot(\beta+\delta)=\alpha \cdot \beta+\alpha \cdot \delta$. Then we have $\alpha \cdot(\beta+\gamma)=\alpha \cdot \bigcup\{\beta+\delta ; \delta \in \gamma\}=\bigcup\{\alpha \cdot(\beta+\delta) ; \delta \in \gamma\}={ }_{I H}$ $\bigcup\{\alpha \cdot \beta+\alpha \cdot \delta ; \delta \in \gamma\}=\bigcup\{\alpha \cdot \beta+\eta ; \eta \in \alpha \cdot \gamma\}=\alpha \cdot \beta+\alpha \cdot \gamma$
b)

Proposition. For α, β, γ ordinals, we have $\alpha^{\beta+\gamma}=\alpha^{\beta} \cdot \alpha^{\gamma}$.
Proof. Let α, β be arbitrary ordinals and do transfinite induction on γ.

- Suppose $\gamma=0$. Then we have $\alpha^{\beta+0}=\alpha^{\beta}$. And by the first lemma we know that $\alpha^{\beta}=0+\alpha^{\beta}$. So then we see that $0+\alpha^{\beta}=\alpha^{\beta} \cdot 0+\alpha^{\beta}=$ $\alpha^{\beta} \cdot s(0)=\alpha^{\beta} \cdot 1=\alpha^{\beta} \cdot \alpha^{0}$.
- Suppose it holds for γ, so $\alpha^{\beta+\gamma}=\alpha^{\beta} \cdot \alpha^{\gamma}$. Then we have $\alpha^{\beta+s(\gamma)}=$ $\alpha^{s(\beta+\gamma)}=\alpha^{\beta+\gamma} \cdot \alpha=_{I H}\left(\alpha^{\beta} \cdot \alpha^{\gamma}\right) \cdot \alpha$. So by the second lemma we see that $\left(\alpha^{\beta} \cdot \alpha^{\gamma}\right) \cdot \alpha=\alpha^{\beta} \cdot\left(\alpha^{\gamma} \cdot \alpha\right)=\alpha^{\beta} \cdot \alpha^{s(\gamma)}$.
- Now suppose that γ is a limit ordinal and for all $\delta<\gamma$ we have $\alpha^{\beta+\delta}=$ $\alpha^{\beta} \cdot \alpha^{\delta}$. Then we have $\alpha^{\beta+\gamma}=\bigcup\left\{\alpha^{\eta} ; \eta \in \beta+\gamma\right\}=\bigcup\left\{\alpha^{\beta+\delta} ; \delta \in \gamma\right\}={ }_{I H}$ $\bigcup\left\{\alpha^{\beta} \cdot \alpha^{\delta} ; \delta \in \gamma\right\}=\alpha^{\beta} \cdot \alpha^{\gamma}$.
c)

Proposition. For all α, β, γ ordinals, we have if $\alpha \leq \beta$, then $\alpha+\gamma \leq \beta+\gamma$.
Proof. Let α, β be arbitrary ordinals and do transfinite induction on γ.

- Suppose $\gamma=0$. Then we have $\alpha+0=\alpha$ and $\beta+0=\beta$. So by our assumption it directly follows that $\alpha+0 \leq \beta+0$.
- Suppose it holds for γ, so we have $\alpha+\gamma \leq \beta+\gamma$. Then $\alpha+s(\gamma)=s(\alpha+\gamma)$ and $\beta+s(\gamma)=s(\beta+\gamma)$. So as s is order preserving we see that it follows from the induction hypothesis that $\alpha+s(\gamma) \leq \beta+s(\gamma)$.
- Now suppose that γ is a limit ordinal and that for all $\delta<\gamma$ we have that if $\alpha+\delta \leq \beta+\delta$. Then $\alpha+\gamma=\bigcup\{\alpha+\delta ; \delta \in \gamma\}$ and $\beta+\gamma=\bigcup\{\beta+\delta ; \delta \in \gamma\}$. So if we can show that the former is a subset of the latter we have the needed result.
So suppose that $x \in \bigcup\{\alpha+\delta ; \delta \in \gamma\}$, then x is of the form $\alpha+\delta$ for some $\delta \in \gamma$. But then by the induction hypothesis we have $\alpha+\delta \leq \beta+\delta$ and thus $\alpha+\delta \subseteq \beta+\delta$. If $\alpha+\delta=\beta+\delta$, then clearly $x=\alpha+\delta \in \bigcup\{\beta+\delta ; \delta \in \gamma\}$. So suppose $\alpha+\delta \subset \beta+\delta$. Then by lemma 2.11 iii) we have $\alpha+\delta \in \beta+\delta$. So then $\alpha+\delta \in \bigcup\{\beta+\delta ; \delta \in \gamma\}$ by definition of union. So indeed $\alpha+\gamma \subseteq \beta+\gamma$ and thus $\alpha+\delta \leq \beta+\gamma$.

Now if we consider the strict version of this statement we get:

$$
\text { If } \alpha<\beta \text {, then } \alpha+\gamma<\beta+\gamma
$$

But if we let $\alpha=0, \beta=1$ and $\gamma=\omega$. Then we see that clearly $\alpha<\beta$. But as $\alpha+\gamma=\omega$ and $\beta+\gamma=\omega$. Hence we do not have $\alpha+\gamma<\beta+\gamma$.

d)

Proposition. For α, β, γ ordinals, if $\alpha<\beta$, then $\gamma+\alpha<\gamma+\beta$.
Proof. Let α, γ be arbitrary ordinals and do transfinite induction on β.

- Suppose $\beta=0$. Then $\alpha<0$, which cannot be the case. So $\beta \neq 0$.
- Now suppose it holds for β, so if $\alpha<\beta$ then $\gamma+\alpha<\gamma+\beta$. Assume that $\alpha<s(\beta)$, then we have $\alpha=\beta$ or $\alpha<\beta$.
$-\alpha=\beta$: Then $\gamma+\alpha=\gamma+\beta<s(\gamma+\beta)=\gamma+s(\beta)$ as each ordinal is strictly smaller than its successor.
$-\alpha<\beta$: Then by the induction hypothesis we have that $\gamma+\alpha<\gamma+\beta$. But again $\gamma+\beta<\gamma+s(\beta)$. And thus $\gamma+\alpha<\gamma+s(\beta)$.
- Now suppose that β is a limit ordinal and for all $\delta<\beta$ we have that if $\alpha<\delta$, then $\gamma+\alpha<\gamma+\delta$. So then we see that as $\alpha<\beta$ we get that there is a δ such that $\alpha<\delta<\beta$. So then by the induction hypothesis $\gamma+\alpha<\gamma+\delta \leq \bigcup\{\gamma+\delta ; \delta \in \beta\}=\gamma+\beta$.
e)

Proposition. For α, β, γ ordinals, if $\alpha \leq \beta$, then $\alpha \cdot \gamma \leq \beta \cdot \gamma$.
Proof. Let α, β be arbitrary ordinals and do transfinite induction on γ.

- Suppose $\gamma=0$. Now $\alpha \cdot 0=0=\beta \cdot 0$. So clearly $\alpha \cdot 0 \leq \beta \cdot 0$.
- Now suppose it holds for γ, so $\alpha \cdot \gamma \leq \beta \cdot \gamma$. As $\alpha \leq \beta$, we have two cases:
$-\alpha=\beta$: Then we see that $\alpha \cdot s(\gamma)=\beta \cdot s(\gamma)$.
$-\alpha<\beta$: Then by d) we see that $\alpha \cdot \gamma+\alpha<\alpha \cdot \gamma+\beta$. And then by the induction hypothesis and c) we see $\alpha \cdot \gamma+\beta \leq \beta \cdot \gamma+\beta$. So $\alpha \cdot s(\gamma)=\alpha \cdot \gamma+\alpha \leq \beta \cdot \gamma+\beta=\beta \cdot s(\gamma)$.
- Suppose that γ is a limit ordinal and that for all $\delta<\gamma$ we have $\alpha<\delta \leq \beta \cdot \delta$. So $\alpha \cdot \gamma=\bigcup\{\alpha \cdot \delta ; \delta \in \gamma\}$. And by the induction hypothesis we have $\bigcup\{\alpha \cdot \delta ; \delta \in \gamma\} \leq \bigcup\{\beta \cdot \delta ; \delta \in \gamma\}=\beta \cdot \gamma$. So $\alpha \cdot \gamma \leq \beta \cdot \gamma$.

Now if we consider the strict version of this statement we have

$$
\text { if } \alpha<\beta \text { then } \alpha \cdot \gamma<\beta \cdot \gamma
$$

But if we let $\alpha=1, \beta=2$ and $\gamma=\omega$. Then we see that $\alpha \cdot \omega=1 \cdot \omega=$ $\bigcup\{1 \cdot n ; n \in \omega\}=\omega$. And also $\beta \cdot \gamma=2 \cdot \omega=\bigcup\{2 \cdot n ; n \in \omega\}=\omega$. So clearly $\alpha<\beta$ but $\alpha \cdot \gamma=\beta \cdot \gamma$ and thus not $\alpha \cdot \gamma<\beta \cdot \gamma$.

Proposition. For all α, β, γ ordinals, if $\alpha<\beta$ and $\gamma \neq 0$, then $\gamma \cdot \alpha<\gamma \cdot \beta$.
Proof. Let α, γ be arbitrary ordinals such that $\gamma \neq 0$. Now do transfinite induction on β.

- Suppose that $\beta=0$. Then $\alpha<0$, which cannot happen. So this case does not occur.
- Now suppose that it holds for β. So if $\alpha<\beta$, then $\gamma \cdot \alpha<\gamma \cdot \beta$. Now suppose that $\alpha<s(\beta)$, then either $\alpha=\beta$ or $\alpha<\beta$:
$-\alpha=\beta$: Then $\gamma \cdot \alpha=\gamma \cdot \beta<\gamma \cdot s(\beta)$ as $\gamma \neq 0$.
$-\alpha<\beta$: Then by the induction hypothesis we know that $\gamma \cdot \alpha<\gamma \cdot \beta$. So as $\gamma \cdot s(\beta)=\gamma \cdot \beta+\gamma$ and $\gamma \neq 0$ we have $\gamma \cdot \alpha<\gamma \cdot s(\beta)$.
- Suppose that β is a limit ordinal and for all $\delta \in \beta$ we have, if $\alpha<\delta$, then $\gamma \cdot \alpha<\gamma \cdot \beta$. As $\alpha<\beta$, there is a δ such that $\alpha<\delta<\beta$. So then $\gamma \cdot \alpha<\gamma \cdot \delta \leq \bigcup\{\gamma \cdot \delta ; \delta \in \beta\}=\gamma \cdot \beta$. So we see that $\gamma \cdot \alpha<\gamma \cdot \beta$.

