Exercise 14.

We begin with \otimes . Let us see if it has the properties of strict total orders:

- Irreflexive. Let $(x_1, x_2) \in X_1 \times X_2$ and assume that $(x_1, x_2) <_{\circ} (x_1, x_2)$. There are two possibilities, $x_1 <_1 x_1$, absurd since $<_1$ is irreflexive and $x_1 = x_1, x_2 <_2 x_2$, absurd since $<_2$ is also irreflexive.
- Transititivy. Let $(x_1, x_2) <_{\circ} (x'_1, x'_2) <_{\circ} (x''_1, x''_2)$. Now we can separate in various cases:
 - $-x_1 <_1 x'_1 <_1 x''_1$ then by transitivity of $<_1, x_1 <_1 x''_1$ so $(x_1, x_2) <_{\circ}$
- Totalness. Let (x_1, x_2) . Then $x_1 <_1 x_1''$ so $(x_1, x_2) <_{\circ} (x_1'', x_2'')$. $x_1 <_1 x_1' = x_1''$ and $x_2 <_2 x_2'$. Then $x_1 <_1 x_1''$ so $(x_1, x_2) <_{\circ} (x_1'', x_2'')$. $x_1 = x_1' < x_1''$ and $x_2 <_2 x_2' <_2 x_2''$. Then $x_1 = x_1''$ and thanks to transitivity of $<_2$ then $x_2 <_2 x_2''$ so $(x_1, x_2) <_{\circ} (x_1'', x_2'')$. Totalness. Let $(x_1, x_2), (x_1', x_2')$. Since $<_1$ is total we have three cases:
- - $-x_1 <_1 x'_1$, then $(x_1, x_2) <_{\circ} (x'_1, x'_2)$.
 - $-x_1' <_1 x_1$, analogous.
 - $-x_1 = x'_1$, then we can again do three cases since $<_2$ is total and we will get that (x_1, x_2) and (x'_1, x'_2) are equal or related.

Now for \boxtimes note that it is clearly irreflexive (if one of $<_1$ or $<_2$ is irreflexive). Transitivity is also true since $(x_1, x_2) <_{\Box} (x'_1, x'_2) <_{\Box} (x''_1, x''_2)$ so $x_1 <_1 x'_1 <_1 x''_1$ so by tansitivity $x_1 <_1 x''_1$, similarly $x_2 <_2 x''_2$ so we get $(x_1, x_2) <_{\Box} (x''_1, x''_2)$. However we are going to check that it is not total. Consider $(\mathbb{N}, <) \boxtimes (\mathbb{N}, <)$ and let $(0,1), (1,0) \in \mathbb{N}$. Then $(0,1) \not\leq_{\Box} (1,0)$ since 1 $\land 0$ but $(1,0) \not\leq_{\Box} (0,1)$ by the same reason. But also $(0,1) \neq (1,0)$ so we conclude that $<_{\Box}$ is not total.

Finally let us prove that \otimes preserves wellfoundedness. Let $A \subseteq X_1 \times X_2$ nonempty. Consider the set $A_1 = \{x_1 \in X_1 \mid \exists x_2 (x_1, x_2) \in A\}$, since A is not empty, neither A_1 is. And since $<_1$ is wellfounded let x'_1 be a minimal element for A_1 . Now define $A_2 = \{x_2 \in X_2 \mid (x'_1, x_2) \in A\}$, it is clear that it is nonempty so thanks to wellfoundedness of $<_2$ it has a minimal element, let it be x'_2 . Clearly (x'_1, x'_2) is in A, and image that there is $(x_1'', x_2'') \in A$ such that $(x_1'', x_2'') < o(x_1', x_2')$, then there are two possibilities:

- $x_1'' <_1 x_1'$, impossible since clearly $x_1'' \in A_1$ and x_1' is minimal. $x_1'' = x_1'$ and $x_2'' < x_2'$, impossible since then $x_2'' \in A_2$ (thanks to $x_1'' = x_1'$) and x'_2 is minimal.

Since both cases are impossible we conclude that there is no such that (x''_1, x''_2) and so (x'_1, x'_2) is minimal.

Exercise 15.

Lemma. Let (W, <) be a strict total order such that for every proper initial segment I there is a $w \in W$ with I = <[w]. Then < is wellfounded, i.e. (W, <) is a wellorder.

Proof. We proceed by contraposition. So assume that (W, <) is not a wellorder, so there is a nonempty subset $X \subseteq W$ with no minimal element. Now we consider the set $I = \{w \in W \mid \forall x \in X.w < x\}$. First note that this is an initial segment since given $y \in I$ and z < y given $x \in X, z < y < x$ and by transitivity z < x, so $x \in I$. It is also proper, thanks to irreflexivity and that X was not empty, so there is $x \in X$ and $x \not< x$. Now we want to show that there is no $w \in W$ such that I = <[w] so assume that there is such a w a we will proof a contradiction. First we prove that $w \in X$. Clearly $\neg \exists x \in X.x < w$ (since otherwise $x \in I$ and that would imply x < x) so thanks to < being total we have that $\forall x \in X.w \leq x$. Now by R.A. assume that $w \notin X$ then $\forall x \in X.w < x$ and so $w \in I = <[w]$, i.e. w < w absurd by irreflexivity. So we conclude that $w \in X$, but as we said earlier $\neg \exists x \in X.x < w$, i.e. w is minimal contrary to the hypothesis that X does not have a minimal element. So we conclude that such a w does not exist as wanted.

1

Exercise 16

In this exercise I will use several lemmas that I will prove first.

Lemma 1. For all ordinals α , we have $0 + \alpha = \alpha$.

Proof. We prove this by transfinite induction on α .

- Suppose $\alpha = 0$. Then we see that $0 + 0 = 0 = \alpha$.
- Now suppose it holds for α , so $0 + \alpha = \alpha$. Then $0 + s(\alpha) = s(0 + \alpha) =_{IH} s(\alpha)$.
- Suppose α is a limit ordinal and for all $\delta < \alpha$ we have $0 + \delta = \delta$. Now $0 + \alpha = \bigcup \{0 + \delta; \delta \in \alpha\} =_{IH} \bigcup \{\delta; \delta \in \alpha\} = \alpha$.

Lemma 2. For all ordinals α, β, γ , we have $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$.

Proof. Let α, β be arbitrary ordinals. Then we prove the lemma by transfinite induction on γ .

- Suppose $\gamma = 0$. Then $(\alpha \cdot \beta) \cdot 0 = 0 = \alpha \cdot 0 = \alpha \cdot (\beta \cdot 0)$.
- Now suppose that it holds for γ , so $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$. Then $(\alpha \cdot \beta) \cdot s(\gamma) = (\alpha \cdot \beta) \cdot \gamma + \alpha \cdot \beta =_{IH} = \alpha \cdot (\beta \cdot \gamma) + \alpha \cdot \beta$. And by the previous lemma we see that $\alpha \cdot (\beta \cdot \gamma) + \alpha \cdot \beta = \alpha(\beta \cdot \gamma + \beta) = \alpha \cdot (\beta \cdot s(\gamma))$.
- Suppose that γ is a limit ordinal and for all $\delta < \gamma$ we have $(\alpha \cdot \beta) \cdot \delta = \alpha \cdot (\beta \cdot \delta)$. Then $(\alpha \cdot \beta) \cdot \gamma = \bigcup \{ (\alpha \cdot \beta) \cdot \delta; \delta \in \gamma \} =_{IH} \bigcup \{ \alpha \cdot (\beta \cdot \delta); \delta \in \gamma \} = \bigcup \{ \alpha \cdot \eta; \eta \in \beta \cdot \gamma \} = \alpha \cdot (\beta \cdot \gamma).$

Lemma 3. For all ordinals α, β, γ , we have $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$

Proof. Let α, β be arbitrary ordinals. Then we prove the lemma by transfinite induction on γ .

- Suppose $\gamma = 0$. Then $(\alpha + \beta) + 0 = \alpha + \beta = (\alpha + 0) + \beta$.
- Now suppose that it holds for γ , so $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$. Then $(\alpha + \beta) + s(\gamma) = s((\alpha + \beta) + \gamma) = _{IH} s(\alpha + (\beta + \gamma)) = \alpha + s(\beta + \gamma) = \alpha + (\beta + s(\gamma)).$

Suppose γ is a limit ordinal and for all $\delta < \gamma$ we have $(\alpha + \beta) + \delta = \alpha + (\beta + \delta)$. Then we have $(\alpha + \beta) + \gamma = \bigcup \{(\alpha + \beta) + \delta; \delta \in \gamma\} =_{IH} \bigcup \{\alpha + (\beta + \delta); \delta \in \gamma\} = \bigcup \{\alpha + \eta; \eta \in \beta + \gamma\} = \alpha + (\beta + \gamma).$

г			п
			I
L			I
-	_	_	

Proposition. For α, β, γ ordinals, we have $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$.

Proof. Let α, β be arbitrary ordinals and do a proof by transfinite induction on γ .

- Suppose $\gamma = 0$. Then we have $\alpha \cdot (\beta + 0) = \alpha + \beta = \alpha \cdot \beta + 0 = \alpha \cdot \beta + \alpha \cdot 0$.
- Now suppose it holds for γ , so $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$. Then we have $\alpha \cdot (\beta + s(\gamma)) = \alpha \cdot s(\beta + \gamma) = \alpha \cdot (\beta + \gamma) + \alpha =_{IH} \alpha \cdot \beta + \alpha \cdot \gamma + \alpha = \alpha \cdot \beta + \alpha \cdot s(\gamma)$.
- Suppose γ is a limit ordinal and for all $\delta < \gamma$ we have $\alpha \cdot (\beta + \delta) = \alpha \cdot \beta + \alpha \cdot \delta$. Then we have $\alpha \cdot (\beta + \gamma) = \alpha \cdot \bigcup \{\beta + \delta; \delta \in \gamma\} = \bigcup \{\alpha \cdot (\beta + \delta); \delta \in \gamma\} =_{IH} \bigcup \{\alpha \cdot \beta + \alpha \cdot \delta; \delta \in \gamma\} = \bigcup \{\alpha \cdot \beta + \eta; \eta \in \alpha \cdot \gamma\} = \alpha \cdot \beta + \alpha \cdot \gamma$

b)

a)

Proposition. For α, β, γ ordinals, we have $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$.

Proof. Let α, β be arbitrary ordinals and do transfinite induction on γ .

- Suppose $\gamma = 0$. Then we have $\alpha^{\beta+0} = \alpha^{\beta}$. And by the first lemma we know that $\alpha^{\beta} = 0 + \alpha^{\beta}$. So then we see that $0 + \alpha^{\beta} = \alpha^{\beta} \cdot 0 + \alpha^{\beta} = \alpha^{\beta} \cdot s(0) = \alpha^{\beta} \cdot 1 = \alpha^{\beta} \cdot \alpha^{0}$.
- Suppose it holds for γ , so $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$. Then we have $\alpha^{\beta+s(\gamma)} = \alpha^{s(\beta+\gamma)} = \alpha^{\beta+\gamma} \cdot \alpha =_{IH} (\alpha^{\beta} \cdot \alpha^{\gamma}) \cdot \alpha$. So by the second lemma we see that $(\alpha^{\beta} \cdot \alpha^{\gamma}) \cdot \alpha = \alpha^{\beta} \cdot (\alpha^{\gamma} \cdot \alpha) = \alpha^{\beta} \cdot \alpha^{s(\gamma)}$.
- Now suppose that γ is a limit ordinal and for all $\delta < \gamma$ we have $\alpha^{\beta+\delta} = \alpha^{\beta} \cdot \alpha^{\delta}$. Then we have $\alpha^{\beta+\gamma} = \bigcup \{\alpha^{\eta}; \eta \in \beta + \gamma\} = \bigcup \{\alpha^{\beta+\delta}; \delta \in \gamma\} =_{IH} \bigcup \{\alpha^{\beta} \cdot \alpha^{\delta}; \delta \in \gamma\} = \alpha^{\beta} \cdot \alpha^{\gamma}$.

c)

Proposition. For all α, β, γ ordinals, we have if $\alpha \leq \beta$, then $\alpha + \gamma \leq \beta + \gamma$.

Proof. Let α, β be arbitrary ordinals and do transfinite induction on γ .

- Suppose $\gamma = 0$. Then we have $\alpha + 0 = \alpha$ and $\beta + 0 = \beta$. So by our assumption it directly follows that $\alpha + 0 \le \beta + 0$.
- Suppose it holds for γ , so we have $\alpha + \gamma \leq \beta + \gamma$. Then $\alpha + s(\gamma) = s(\alpha + \gamma)$ and $\beta + s(\gamma) = s(\beta + \gamma)$. So as s is order preserving we see that it follows from the induction hypothesis that $\alpha + s(\gamma) \leq \beta + s(\gamma)$.

• Now suppose that γ is a limit ordinal and that for all $\delta < \gamma$ we have that if $\alpha + \delta \leq \beta + \delta$. Then $\alpha + \gamma = \bigcup \{\alpha + \delta; \delta \in \gamma\}$ and $\beta + \gamma = \bigcup \{\beta + \delta; \delta \in \gamma\}$. So if we can show that the former is a subset of the latter we have the needed result.

So suppose that $x \in \bigcup \{ \alpha + \delta; \delta \in \gamma \}$, then x is of the form $\alpha + \delta$ for some $\delta \in \gamma$. But then by the induction hypothesis we have $\alpha + \delta \leq \beta + \delta$ and thus $\alpha + \delta \subseteq \beta + \delta$. If $\alpha + \delta = \beta + \delta$, then clearly $x = \alpha + \delta \in \bigcup \{\beta + \delta; \delta \in \gamma\}$. So suppose $\alpha + \delta \subset \beta + \delta$. Then by lemma 2.11 iii) we have $\alpha + \delta \in \beta + \delta$. So then $\alpha + \delta \in \bigcup \{\beta + \delta; \delta \in \gamma\}$ by definition of union. So indeed $\alpha + \gamma \subseteq \beta + \gamma$ and thus $\alpha + \delta \leq \beta + \gamma$.

Now if we consider the strict version of this statement we get:

If
$$\alpha < \beta$$
, then $\alpha + \gamma < \beta + \gamma$

But if we let $\alpha = 0, \beta = 1$ and $\gamma = \omega$. Then we see that clearly $\alpha < \beta$. But as $\alpha + \gamma = \omega$ and $\beta + \gamma = \omega$. Hence we do not have $\alpha + \gamma < \beta + \gamma$.

d)

Proposition. For α, β, γ ordinals, if $\alpha < \beta$, then $\gamma + \alpha < \gamma + \beta$.

Proof. Let α, γ be arbitrary ordinals and do transfinite induction on β .

- Suppose $\beta = 0$. Then $\alpha < 0$, which cannot be the case. So $\beta \neq 0$.
- Now suppose it holds for β , so if $\alpha < \beta$ then $\gamma + \alpha < \gamma + \beta$. Assume that $\alpha < s(\beta)$, then we have $\alpha = \beta$ or $\alpha < \beta$.
 - $-\alpha = \beta$: Then $\gamma + \alpha = \gamma + \beta < s(\gamma + \beta) = \gamma + s(\beta)$ as each ordinal is strictly smaller than its successor.
 - $-\alpha < \beta$: Then by the induction hypothesis we have that $\gamma + \alpha < \gamma + \beta$. But again $\gamma + \beta < \gamma + s(\beta)$. And thus $\gamma + \alpha < \gamma + s(\beta)$.
- Now suppose that β is a limit ordinal and for all $\delta < \beta$ we have that if $\alpha < \delta$, then $\gamma + \alpha < \gamma + \delta$. So then we see that as $\alpha < \beta$ we get that there is a δ such that $\alpha < \delta < \beta$. So then by the induction hypothesis $\gamma + \alpha < \gamma + \delta \le \bigcup \{\gamma + \delta; \delta \in \beta\} = \gamma + \beta$.

e)

Proposition. For α, β, γ ordinals, if $\alpha \leq \beta$, then $\alpha \cdot \gamma \leq \beta \cdot \gamma$.

Proof. Let α, β be arbitrary ordinals and do transfinite induction on γ .

• Suppose $\gamma = 0$. Now $\alpha \cdot 0 = 0 = \beta \cdot 0$. So clearly $\alpha \cdot 0 \leq \beta \cdot 0$.

- Now suppose it holds for γ , so $\alpha \cdot \gamma \leq \beta \cdot \gamma$. As $\alpha \leq \beta$, we have two cases:
 - $-\alpha = \beta$: Then we see that $\alpha \cdot s(\gamma) = \beta \cdot s(\gamma)$.
 - $-\alpha < \beta$: Then by d) we see that $\alpha \cdot \gamma + \alpha < \alpha \cdot \gamma + \beta$. And then by the induction hypothesis and c) we see $\alpha \cdot \gamma + \beta \leq \beta \cdot \gamma + \beta$. So $\alpha \cdot s(\gamma) = \alpha \cdot \gamma + \alpha \leq \beta \cdot \gamma + \beta = \beta \cdot s(\gamma)$.
 - Suppose that γ is a limit ordinal and that for all $\delta < \gamma$ we have $\alpha < \delta \leq \beta \cdot \delta$. So $\alpha \cdot \gamma = \bigcup \{\alpha \cdot \delta; \delta \in \gamma\}$. And by the induction hypothesis we have $\bigcup \{\alpha \cdot \delta; \delta \in \gamma\} \leq \bigcup \{\beta \cdot \delta; \delta \in \gamma\} = \beta \cdot \gamma$. So $\alpha \cdot \gamma \leq \beta \cdot \gamma$.

Now if we consider the strict version of this statement we have

if
$$\alpha < \beta$$
 then $\alpha \cdot \gamma < \beta \cdot \gamma$

But if we let $\alpha = 1$, $\beta = 2$ and $\gamma = \omega$. Then we see that $\alpha \cdot \omega = 1 \cdot \omega = \bigcup \{1 \cdot n; n \in \omega\} = \omega$. And also $\beta \cdot \gamma = 2 \cdot \omega = \bigcup \{2 \cdot n; n \in \omega\} = \omega$. So clearly $\alpha < \beta$ but $\alpha \cdot \gamma = \beta \cdot \gamma$ and thus not $\alpha \cdot \gamma < \beta \cdot \gamma$.

Proposition. For all α, β, γ ordinals, if $\alpha < \beta$ and $\gamma \neq 0$, then $\gamma \cdot \alpha < \gamma \cdot \beta$.

Proof. Let α, γ be arbitrary ordinals such that $\gamma \neq 0$. Now do transfinite induction on β .

- Suppose that $\beta = 0$. Then $\alpha < 0$, which cannot happen. So this case does not occur.
- Now suppose that it holds for β . So if $\alpha < \beta$, then $\gamma \cdot \alpha < \gamma \cdot \beta$. Now suppose that $\alpha < s(\beta)$, then either $\alpha = \beta$ or $\alpha < \beta$:
 - $-\alpha = \beta$: Then $\gamma \cdot \alpha = \gamma \cdot \beta < \gamma \cdot s(\beta)$ as $\gamma \neq 0$.
 - $-\alpha < \beta$: Then by the induction hypothesis we know that $\gamma \cdot \alpha < \gamma \cdot \beta$. So as $\gamma \cdot s(\beta) = \gamma \cdot \beta + \gamma$ and $\gamma \neq 0$ we have $\gamma \cdot \alpha < \gamma \cdot s(\beta)$.
- Suppose that β is a limit ordinal and for all $\delta \in \beta$ we have, if $\alpha < \delta$, then $\gamma \cdot \alpha < \gamma \cdot \beta$. As $\alpha < \beta$, there is a δ such that $\alpha < \delta < \beta$. So then $\gamma \cdot \alpha < \gamma \cdot \delta \leq \bigcup \{\gamma \cdot \delta; \delta \in \beta\} = \gamma \cdot \beta$. So we see that $\gamma \cdot \alpha < \gamma \cdot \beta$.