-inderwerp; Homework 3) Datum: Homework Z = En EIN In is pedelind finites (Da) Let Z = En EIN In is pedelind finites on = 0 = \$ Then trivivially any mapping \$ 0 - \$ is needed. both injective and surjective. This every injection From 0 to 0 is a bijection and 0 is pedelind Finite Thus 0 eZ. bijection and 0 is pedelind · Suppose nez so his Dedelind finite This any injective function of non is also surjective. Now consider any injective function for some schol provide function for: sch) + sch), where sch)=n u En3. Suppose it is not surjective then there are 2 options: #1) VXESCO) F(x) ≠ n, so n is not in the image of F. Now restrict the domain of F to n, one obtains a function F: n >n. As F was injective and tranction find finite fiss abo injective. As n is Dedehind finite fi is abo surjective This Vken Elen f'(0)=k. Thus, for f to be injective f(n) &n but we also assumed that Vx es(n) f(x) ≠n, so also F(n) # h. Thus F(n) & s(n) a contradiction. 2) $\exists \hat{x} \in S(h) f(x) = h$ and $\forall x \in S(h) f(x) \neq y$ for some $y \in h$. As f is injective, the $\hat{x} \in S(h)$ s.t. f(x) = h is unique. Now consider $f' : S(h) \neq S(h) \neq j$ ven by f'(x) = y (where \hat{x} was s.t. f(x) = h) and $f'(z) = f'(z) \forall z \in S(h) \setminus \{x\}$. As f was injective, so we is f', and VXESCN) F'(X) 7 n. But now we have exactly the situation as in D which will yield a contradiction. Thus any injective Function Fisch) as (n) is ⇒ By the principle of induction Z=IN and every natural number is Dedekind Finite. b) Let Zm = En EIN In them is in bijection with some kEIN3, where m is some fixed natural number. on = O = Ø. Now take k = m and the function f: k = m the by f(x) = (1, x) f: k = m the given by f(x) = (1, x) for all x Ek. Clearly this function is bijective, • Suppose n∈Zm, consider s(n) = n ∪ {n}. We know there exists a k∈IN st. fik → nUm is a bijection. Now consider g: s(k) → s(n) Um given by g(x) = f(x) ∀x Ek and given by = (0, n). Clearly this function given by f(x) = (cu) vicek and g(k) = (co, n). Clearly this function is bijective so s(n) e 2m. By the principle of induction Zm = IN for all m E IN. Thus for any natural numbers n, m _____Direct bedrijven spotten. Direct solliciteren. 13336 Lowindt jouw uitdaging op www.studentfactor.nl

Onderwerp:

gratis collegeblok

Datum:

there is a natural number le st. L'is in bijection
Now suppose there are two natural numbers k, k' E IN distinct (k + k') such that the both
Whod Kick By assumptions there are
bisections f: kernum and g: num aki
the domain of fog to k' one obtains a
was injective. By 10 as k's Dedehind Finite
Exek x & k'. For fog to be injective, we
Thus for any natural numbers nom there is a
with n Um.
Da) Fix any nm EIN. Consider
Base case: k=0. Using the Grassmann equations:
(n+m)+0 = n+m
• Unductive step: suppose ke Z, so n+ (m+k) = (n+m)+k. Now: n+(m+s(k)) = n+s(m+k) = s(n+(m+k))
Thus they are equal and $s(k) \in \mathbb{Z}$.
By induction and as nm EIN were randomly fixed we can conclude that Vn, m, k EIN n+ (m+k) = (n+m)+k. as Z=IN.
b) Consider 2:= EmEINI Zem is inductive?
• Base case: Consider Zo. to prove it is inductive:
- base case: 0+0=0+0=0 SO 0EZO - inductive step: Suppose n+0=0+n=nNow
0 + s(n) = s(o+n) = s(n) s(n) + o = s(n)
• Inductive step: J will use two observations:
1) $n+1 = n+s(0) = s(n+0) = s(n)$ 2) Z_1 is inductive. proof:
- base case: 1+0 =1 = s(o) = s(o+o) = 0+s(o)=o+1 - Inductive step: Suppose kotsected n+1=1+n. Now
$\frac{1+s(n) = s(1+n) = s(n+1) = s(s(n)) = s(s(n)+0) = s(n)+1}{\text{Thus } Z_1 = 1N \cdot \text{ and } I \in \mathbb{Z}}$
Nov suppose $n+m = m+n$. Now $n+s(m) = n+(m+i) \stackrel{\text{\tiny left}}{=} (n+m)+i \stackrel{\text{\tiny left}}{=} (m+n)+i$
Thus as Zo and Zi are inductive, by induction Zmis
inductive vince in and et IV. This ntm = mth Vm, ne IN

··· giuis collegeblok Onderwerp: Datum: c) Fix any n, m EIN. Consider Z = EkEINIn (m+k) = nm+nk3 Base case: k =0 using the Grassmann equations! n(m+o) = n(m) = nm V • Inductive step: Suppose $k \in \mathbb{Z}$, so n(m+k) = nm+nk. Now $nm+n \ s(k) = nm+nk+n$ n(m+s(k)) = n(m+(k+i)) = n((m+k)+i) = n(s(m+k)) = n(m+k)+n = nm+nk+nThus by induction $\mathbb{Z} = IN$ and as $n, n \in IN$ were randomly fixed is can conclude that M is the other of m+k of m+nk. Fixed we can conclude that Vn, m. kell n (m+k)=nm+nk. $X_{1} := (X_{1}, \prec_{1}) \quad X_{2} := (X_{2}, \prec_{2}) \quad \text{strict total orders.}$ $X_{1} \oplus X_{2} = (X, \prec). \qquad X := X. \quad \forall X_{2}$ $(b, x) < (c, x') \Leftrightarrow (b = o \land c = i) \lor (b = c = o \land x < i x') \lor (b = c = i \land x < z x')$ 13) • To show : X. OX2 is a strict total order. - freeflexivity: Suppose for contradiction that (b,x) < (b,x) For some (b, x) E X. There are 2 options: 2) b=0, then it follows that x <, x, a contradiction as Xz is a strict total order 2) b= 2. then X < 2 X a contradiction as X2 is a strict total order. Thus (b,x) & (b,x) & (b,x) EX Transitivity: Suppose (a,x)<(b,x') and (b,x')<(c,x") There are options 1) a=b=c=o, then it follows from the transitivity of X1 that as x<.x' and x'<.x", x<.x" thus (q,x)< (c,x"). 2) a =b = c =1, by transitivity of X2, as X<2X' and $X' <_2 x''$, $X <_2 x''$ and thus (a, x) < (c, x''). $q = b \neq c$ or $a \neq b = c$. In both cases a = 0 and c = 1. thus (a,x) < (c,x"). Totality: Consider (a,x), (b,x') ∈ X. There are 2 options. 2) JI a 7 b. w.l.o.g. let a=0. Then (a,x) < (b, x'). 2) of a=b, three suboptions: - a=b=o, then as X, is total X <, x' or X' <, x or x'=x Thus (a, x) < (b, x') or (b, x') < (a, x) or (b, x) = (a, x). - a=b=1, then as X₂ is total $x <_2 x'$ or $x' <_2 x$ or x = x', so (a, x) < (b, x'), or (b, x') < (a, x) or (b, x') = (a, x)Thus X. @ X2 is a strict total order • To show: X2, X2 well founded (> X, EX2 well founded. (wellfounded es every nonempty subset has a least element) Suppose X1 X2 are well founded. Take any nonempty subset $Z \subseteq X$. Consider $Z_1 = X_1 \cap \{x \mid (o, x) \in Z\} \subseteq X_1$. JF it is nonempty, it has a least element x_2 it follows = that (0, x2) is the least element of Z. JF Z. 'is empty, then $Z_2 = X_2 \cap \{X \mid (1, x) \in Z\} \subseteq X_2$ is nonempty thus it has a least element X2. It follows that (1, x2) is the least element of Z. Thus X. @ X2 is well founded. ARCADIS for natural and built assets Improving quality of life.

gratis	Onderwerp:
collegeblok	Datum:
Suppose X. E X ₂ is not without a Z = ECO, XX this has a X ₂ is the The case with	$D X_2$ P is well founded but for contradiction . Then $\exists Z_1 \subseteq X_2$ where $Z_1 \neq \phi$ least element. Consider $I \times \in Z_2$, $P \subseteq X$ by assumption least element (0, X_2), but this implies least element for $Z_1 \notin$ hen X_2 is not well founded is similar.

Exercise 12. Assume $(X, \leq, 0, S)$ satisfies the principle of complete induction. We recursively define a function $f: \mathbb{N} \to X$: $f(\emptyset) = 0$ and $f(n \cup \{n\}) = S(f(n))$. It can be shown by induction on n that m < n implies f(m) < f(n). By totality, the converse is also true. Since f is strictly increasing, it is one-to-one. The set ran f is S-inductive hence f is onto. We conclude that f is an isomorphism from $(\mathbb{N}, \subseteq, \emptyset, x \mapsto x \cup \{x\})$ to $(X, \leq, 0, S)$. Hence every property true in the former is also true in the latter. In particular, we have z < S(x) if and only if z < x or z = x.

We now prove that $(X, \leq, 0, S)$ satisfies the principle of order induction. Let Z be an order inductive set. We define $Z' = \{x \in X : \forall z < x (z \in Z)\}$. Notice that because Z is order inductive, we have $Z' \subseteq Z$. Clearly $0 \in Z'$ because there is no z < 0. If $x \in Z'$, then $S(x) \in Z'$. Indeed, if z < S(x) then either z < x or z = x. If z < x then $z \in Z$ by the definition of Z' and if z = x then $z \in Z$ since $Z' \subseteq Z$. Hence Z' is S-inductive thus Z' = X. Since $Z' \subseteq Z \subseteq X$, we also have Z = X and the principle of order induction is true.

Let us now assume that $(X, \leq, 0, S)$ satisfies the principle of order induction. We show that it satisfies the least number principle. Let Z be a set with no least element. Then clearly Z^c is order inductive because if for all $z < x, z \notin Z$, then $x \notin Z$ because otherwise x would be minimal. Hence $Z^c = X$ and Z is empty.

We finally assume that $(X, \leq, 0, S)$ satisfies the least number principle and show that it satisfies the principle of order induction. Let Z be an order inductive set. Assume $Z \neq X$, then there is a minimal $x \in X$ such that $x \notin Z$. But for every z < x, we have $z \in Z$ by the minimality of x hence $x \in Z$ since Z is order inductive. That is absurd, thus we must have Z = X.