Homework Sheet \#2

Deadline for Homework Set \#2: Monday, 27 September 2021, 2pm. Please hand in via the elo webpage as a single pdf file.
(5) Find a graph model $\mathbf{G}=(V, E)$ with vertices v and w such that

$$
\mathbf{G} \models \forall z(z \in w \leftrightarrow z \subseteq v)
$$

(i.e., w is a power set of v) where v has n predecessors, but w has strictly more than 2^{n} predecessors. (By a result from Lecture II, this graph cannot satisfy all axioms of FST.)
(6) We use the idea of the constructions from Group Interaction \#1. Only start working on this homework question after your group interaction session.
Let $\mathbf{G}=(V, E)$ be any directed graph. If $v \in V$, we write $\operatorname{pred}_{\mathbf{G}}(v):=\{w \in V ; w E v\}$ for the set of \mathbf{G}-predecessors of v. If $Z \subseteq V$, we say that Z is managed in \mathbf{G} if there is some $v \in V$ such that $\operatorname{pred}(v)=Z$. Otherwise, we say that Z is unmanaged in \mathbf{G}.
The directed graph $\operatorname{vN}(\mathbf{G}):=\left(V^{*}, E^{*}\right)$ is called the von Neumann augmentation of \mathbf{G} if V^{*} consists of all of the vertices of V plus a set of new vertices V^{+}such that each new vertex $v \in V^{+}$corresponds to exactly one set $Z \subseteq V$ that is unmanaged in \mathbf{G} with $\operatorname{pred}_{\mathrm{vN}(\mathbf{G})}(v)=Z$. Furthermore, for each $v \in V, \operatorname{pred}_{\mathbf{G}}(v)=\operatorname{pred}_{\mathrm{vN}(\mathbf{G})}(v)$.
Given any directed graph \mathbf{G}, we define by recursion

$$
\begin{aligned}
\mathbf{G}_{0} & :=\mathbf{G} \text { and } \\
\mathbf{G}_{n+1} & :=\mathrm{vN}\left(\mathbf{G}_{n}\right) .
\end{aligned}
$$

Write $\mathbf{G}_{n}:=\left(V_{n}, E_{n}\right)$ and define $V_{\infty}:=\bigcup_{n \in \mathbb{N}} V_{n}$ and $E_{\infty}:=\bigcup_{n \in \mathbb{N}} E_{n}$. We call the directed graph $\mathbf{G}_{\infty}:=\left(V_{\infty}, E_{\infty}\right)$ the von Neumann closure of \mathbf{G}.
Start with the graph \mathbf{H} consisting of a single vertex with no edges and form its von Neumann closure \mathbf{H}_{∞}.
Show that \mathbf{H}_{∞} is a locally finite graph that satisfies all the axioms of FST.
(7) Work in FST. A formula $\Phi(x, y, p)$ is called functional if the following holds: if $\Phi(x, y, p)$ and $\Phi\left(x, y, p^{\prime}\right)$, then $p=p^{\prime}$. If Φ is a functional formula, we write $\Phi(x, y)$ for the unique p such that $\Phi(x, y, p)$.
The formula Φ is called an ordered pair definition if it is functional and for all x, x^{\prime}, y, and y^{\prime}, the following holds: $\Phi(x, y)=\Phi\left(x^{\prime}, y^{\prime}\right)$ if and only if $x=x^{\prime}$ and $y=y^{\prime}$.
In Lecture II, we stated that Kuratowski's formula $\Phi_{\mathrm{K}}(x, y, p): \Longleftrightarrow p=\{\{x\},\{x, y\}\}$ is an ordered pair definition. (If you have never seen the proof, check that this is correct.)
Are the following two formulas ordered pair definitions?
(a) $\Psi_{0}(x, y, p): \Longleftrightarrow p=\{\{y\},\{x, y\}\}$;
(b) $\Psi_{1}(x, y, p): \Longleftrightarrow p=\{y, y \cup\{x\}\}$.
(8) Work in FST and show that there cannot be a set of all groups.
[Hint. For every set x, there is a group whose universe is $\{x\}$.]
(9) Work in \mathbf{Z} and prove that \in is a total strict order relation on \mathbb{N} and that \subseteq is a total order relation on \mathbb{N}.
[Note. Irreflexivity and transitivity of \in will be proved in Lecture III, so you may skip them.]

