Homework Sheet #2

MasterMath: Set Theory 2021/22: 1st Semester rt Steef Hereman Benedikt Löve Robert Paßmann

K. P. Hart, Steef Hegeman, Benedikt Löwe, Robert Paßmann

Deadline for Homework Set #2: Monday, 27 September 2021, 2pm. Please hand in via the elo webpage as a single pdf file.

(5) Find a graph model $\mathbf{G} = (V, E)$ with vertices v and w such that

$$\mathbf{G} \models \forall z (z \in w \leftrightarrow z \subseteq v),$$

(i.e., w is a power set of v) where v has n predecessors, but w has strictly more than 2^n predecessors. (By a result from Lecture II, this graph cannot satisfy all axioms of FST.)

(6) We use the idea of the constructions from *Group Interaction* #1. Only start working on this homework question *after* your group interaction session.

Let $\mathbf{G} = (V, E)$ be any directed graph. If $v \in V$, we write $\operatorname{pred}_{\mathbf{G}}(v) := \{w \in V; w \in v\}$ for the set of \mathbf{G} -predecessors of v. If $Z \subseteq V$, we say that Z is managed in \mathbf{G} if there is some $v \in V$ such that $\operatorname{pred}(v) = Z$. Otherwise, we say that Z is unmanaged in \mathbf{G} .

The directed graph $vN(\mathbf{G}) := (V^*, E^*)$ is called the *von Neumann augmentation of* \mathbf{G} if V^* consists of all of the vertices of V plus a set of new vertices V^+ such that each new vertex $v \in V^+$ corresponds to exactly one set $Z \subseteq V$ that is unmanaged in \mathbf{G} with $\operatorname{pred}_{vN(\mathbf{G})}(v) = Z$. Furthermore, for each $v \in V$, $\operatorname{pred}_{\mathbf{G}}(v) = \operatorname{pred}_{vN(\mathbf{G})}(v)$.

Given any directed graph \mathbf{G} , we define by recursion

$$\mathbf{G}_0 := \mathbf{G}$$
 and
 $\mathbf{G}_{n+1} := \mathrm{vN}(\mathbf{G}_n).$

Write $\mathbf{G}_n := (V_n, E_n)$ and define $V_{\infty} := \bigcup_{n \in \mathbb{N}} V_n$ and $E_{\infty} := \bigcup_{n \in \mathbb{N}} E_n$. We call the directed graph $\mathbf{G}_{\infty} := (V_{\infty}, E_{\infty})$ the von Neumann closure of \mathbf{G} .

Start with the graph \mathbf{H} consisting of a single vertex with no edges and form its von Neumann closure \mathbf{H}_{∞} .

Show that \mathbf{H}_{∞} is a locally finite graph that satisfies all the axioms of FST.

(7) Work in FST. A formula $\Phi(x, y, p)$ is called *functional* if the following holds: if $\Phi(x, y, p)$ and $\Phi(x, y, p')$, then p = p'. If Φ is a functional formula, we write $\Phi(x, y)$ for the unique p such that $\Phi(x, y, p)$.

The formula Φ is called an *ordered pair definition* if it is functional and for all x, x', y, and y', the following holds: $\Phi(x, y) = \Phi(x', y')$ if and only if x = x' and y = y'.

In Lecture II, we stated that Kuratowski's formula $\Phi_{K}(x, y, p) : \iff p = \{\{x\}, \{x, y\}\}$ is an ordered pair definition. (If you have never seen the proof, check that this is correct.)

Are the following two formulas ordered pair definitions?

- (a) $\Psi_0(x, y, p) : \iff p = \{\{y\}, \{x, y\}\};$
- (b) $\Psi_1(x, y, p) : \iff p = \{y, y \cup \{x\}\}.$
- (8) Work in FST and show that there cannot be a set of all groups.

[*Hint.* For every set x, there is a group whose universe is $\{x\}$.]

(9) Work in Z and prove that \in is a total strict order relation on \mathbb{N} and that \subseteq is a total order relation on \mathbb{N} .

[*Note.* Irreflexivity and transitivity of \in will be proved in Lecture III, so you may skip them.]