
Exercise 5. The model G depicted below
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makes ∀z (z ∈ w ↔ z ⊆ v) true. However, v has 0 predecessors and w has 2 predecessors, which is
greater than 20. The model G does not satisfy extensionality, so it does not contradict the result from
the lecture.
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Set Theory: HW 2.6

Exercise 6. Start with the graph H consisting of a single vertex with no edges
and form its von Neumann closure H∞. Show that H∞ is a locally finite graph
that satisfies all the axioms of FST.

Solution. First we note that the von Neumann augmentation of a graph
does not yield any new predecessors of existing vertices, just new vertices (with
predecessors). Also note that H is finite and if Hn is finite, then it has finitely
many unmanaged sets and therefore Hn+1 is finite. Thus by induction, all Hn

for n ∈ N are finite.

Locally finite Let v ∈ H∞. Then there is some n ∈ N such that v ∈ Hn.
Since Hn is finite, v has finitely many predecessors in Hn. By the note
above, v has fineitely many predecessors in H∞.

Ext Assume there are distinct v, w ∈ H∞ with the same set of predecessors.
Then there is some n ∈ N such that v, w ∈ Vn but not v, w ∈ Vn−1. If we
have v /∈ Vn−1 and w /∈ Vn−1, then v and w were both added in the von
Neumann augmentation whereas only one was required, a contradiction.
If we have (without loss of generality) that v ∈ Vn−1 and w /∈ Vn−1, then
the set of predecessors of v is managed in Vn−1 and therefore, w should not
be added in the von Neumann augmentation, a contraction. We conclude
that such v, w do not exist.

Pair+Union+Pow For the Axioms of Pairing, Union and Power Set to hold,
we need to show that for any vertex (or pair of vertices) some finite set of
vertices is managed in H∞. But there is some n ∈ N such that this finite
set is contained in Hn and therefore the required set (the pair, union or
power set) is present in Hn+1 and therefore in H∞.

Sep Let v ∈ H∞ and let φ(x, ~p) be any LST formula. Then there is some
n ∈ N such that v ∈ Vn. Now by the same argument as above, the set
{z ∈ v | φ(z, ~p)} is a vertex of Hn+1, and therefore of H∞.
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Exercise 8. Assume there is a set U of all groups. For any set x, there is a group with domain {x},
namely G = ( {x} , {((x, x), x)} ). Assuming pairs are defined using Kuratowski’s formula, we have
x ∈ ⋃⋃

G. Hence for all set x, we have x ∈ ⋃⋃⋃
U . But according to the axiom of union,

⋃⋃⋃
U

is a set and according to the axiom of separation, there is no set of all sets. That is absurd!
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9. We first need a lemma: if n,m ∈ N and n ∈ m then s(n) ∈ s(m). Use
induction. Let J = {z ∈ N:∀x(x ∈ z → s(x) ∈ s(z))}. For the empty set
the condition is vacuously true. Suppose k ∈ J and let x ∈ s(k). s(k) =
k∪{k} so either x = k or x ∈ k. In the former case s(x) = s(k) ∈ s(s(k)).
In the latter case, x ∈ k ⊆ s(k) ⊆ s(s(k)). We conclude that J is inductive
and therefore J = N. This proves the lemma.

We begin with totality of ∈. Let n ∈ N. We will show by induction that
for any m ∈ N, m is related to n by = or ∈. Let Z = {m ∈ N:m = n∨m ∈
n ∨ n ∈ m}. In the lecture we have seen that ∅ ∈ n so that ∅ ∈ Z. Now
suppose that m ∈ Z. Distinguish the 3 cases:

(a) m = n. Then n ∈ n ∪ {n} = m ∪ {m} = s(m) so s(m) ∈ Z.

(b) n ∈ m. Then n ∈ m ∪ {m} = s(m) so s(m) ∈ Z.

(c) m ∈ n. Using the lemma s(m) ∈ s(n) = n ∪ {n} so either s(m) = n
or s(m) ∈ n. In either case s(m) ∈ Z.

We conclude that Z is inductive and therefore Z = N. Since n was arbi-
trary, ∈ is total.

Now we show that ⊆ is reflexive, transitive, antisymmetric and total. Let
x, y, z ∈ N.

Reflexive Every element of x is also in x, so x ⊆ x.

Transitive Suppose x ⊆ y ⊆ z. Any element in x is also in y, and also in
z, so x ⊆ z.

Antisymmetry Suppose x ⊆ y and y ⊆ x. This means that x and y have
precisely the same elements. By extensionality they are identical.

Totality If x 6= y, then by totality of ∈ either x ∈ y ∨ y ∈ x and because
x and y are transitive, either x ⊆ y or y ⊆ x.
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