up. a) Every confichation is contained in a maximal antichation.

D Suppose thest A is an autichain.

Jalle B=1B|A=B, B is an amfichaln⁵.

Kirill Kopner 1B is a partially ordered set with 5.

Liet us apply Zorn's lemma to obtain a maximal element of IB.

First ve show that VC: C-chain in B=)

C has an usade stanmant. upper pound.

Let C be a shain in B. Then fake UC. It is an antichain and $UC \ge A$, since $\forall C \in C$: $C \ge A$. Thus UC is an upper

hound-

By $2 \operatorname{orn's'}$ lemma: $\exists A': A' is \max$ in IB. A' is an antichain and $A \subseteq A!$

b). If A is a max antichain in D-dense, then A is max antichain in IP.

D Suppose A is not max in IP. Then 3p: AUSPS is an anticham.

Since Dis dence, we have:

Eq: q=p n qED. Thus, AU193 is also an antichain. D'Suppose Aug3 is not an antichain. Then Zq'EA ZrEP: req ; req' ; Then, BrelP: rsqsp ; rsq' Thues, AUZp3 is not an antichain S. It is a contradiction (since $q \in D$ and A is a max antichain in D). Therefore A is a max autichain in IP. G is M-generic filter on $Fn(sz^m x s, 2)$ itt VA: A-max autichain of P, $ANG \neq P$. (⇒) Suppose G is a filter on Fn (w2 xw,2) em G is a filter on Fn (w2 xw,2) and IA: A-max antichain of P and ANG=0. We are going to build a dense set in M, s.t. GND=\$. Aldre First notice that: Upe G IgeA: p,gare compatible. Recursively define sequence of $(D_i: i \in \mathbb{R})$, where $\mathcal{R} = IP/.$

41.

Put Do= A. A Ely S'uppose for all 325 Ds is defined. $f(\delta) = P$, M $f(\delta) =$ a hijection Then p&G or p&G. If p&G, take $D_{5} = \bigcup D_{3} \cup 2 p_{3}$ It pEG, Malle gEA, s.t. 9 and pare compatible. Then $\exists r \in P$: $r \leq p$; $r \leq q$. This r&G, because o/w 9EG, since G is a filter. Thus face DS=UDgUEr3. Jake D= UDd. Buppose pet Let us show that D is dence. Suppose $P \in IP$. Then there is $\Delta \in \mathcal{K}$, i.t. $f(\Delta) = p$ (where p is an ascanarphism). Take Da. Then Da= UD Do UEP3 or Dd = U Dp v[r], Mure r ≤ p

4

Thus, 3r: reD and rsp. Hence; Dis dense. Abo we have : DAG=9. => G is not M-generic. (<=) Sluppose G is a filter and G is not M-generic. Then]D: D is dense in M Im P, and GAD=Ø. Thus, take any autichain in D. Then it is contained in a maximal antichain P! By 40.b): A'is max in P. Since AGD, then ANG=Ø. (also A'is in M, since P is in M). a) Construct on antichain in Fn(X, 2, K) that is of cardinality 2. D'take any ZEX, Z is countable. Tave 18=2 XA [ASZ, XA is a characteristic functions] |B|= 2^{No} and 1B is an antichain. a

42

AGEKJ = X to = K b). & S'ince D by theorem orelated to carsinal arithmetic we have that: $\mu^{N_0} \geq 2k \quad \forall \mu \leq k , \quad cf(\mathcal{U}) \geq k$ $\implies k'^{N_0} = k \quad 0$ Therefore we can built a sequence (az: LER). Now the " proof of the relativisation of A-system sheavem can be repeated. c). D Suppose 1A1>2 ×0. Take 1A1=(2 ×0)⁺. $A \leq A$. Since $\forall \lambda : \lambda < (2^{N_0})^+ \Rightarrow \lambda^{N_0} < k$, we can apply 42 b). Then just repeat the proof of the last theorem of the lecture 4.