Homework 11: Set Theory

Melle van Marle

27 november 2021

(37)

- 1. This is immediate from the definitions.
- 2. Suppose that φ is absolute for M, N. Let $m_1, \ldots, m_k \in M$, and suppose that $(\exists x \varphi(x, m_1, \ldots, m_k))^M$ holds. Per definition, this means that $\exists x(x \in M \land \varphi(x, m_1, \ldots, m_k)^M)$ holds. Now note that $x \in N$, since $M \subseteq N$ and by assumption $\varphi(x, m_1, \ldots, m_k)^N$ holds. Thus, we have $(\exists x \varphi(x, m_1, \ldots, m_k))^N$ as desired.
- 3. Suppose that φ is absolute for M, N. Let $m_1, \ldots, m_k \in M$, and suppose that $(\forall x \varphi(x, m_1, \ldots, m_k))^N$ holds. Per definition, this means that $\forall x (x \in N \land \varphi(x, m_1, \ldots, m_k)^N)$ holds. By assumption, we have $\varphi(x, m_1, \ldots, m_k)^M$ holds if $\varphi(x, m_1, \ldots, m_k)^N$ holds (for $x \in M$). Since $M \subseteq N$, it follows that $(\forall x \varphi(x, m_1, \ldots, m_k))^M$ holds.

(38)

1. Let $\psi(A, X, R) := (R \text{ is a transitive relation on } X) \land \forall u \in X(\neg uRu) \land ((A \subseteq X \land \exists x \in A) \rightarrow \exists y \in A(\forall z \in A(y \neq z \rightarrow yRz))).$

Note here that subset of and transitivity are Δ_0 concepts (see lemma 12.10 of Jech).

- 2. I'm not going to write down this formula because it will be too long, but note that the following properties are absolute:
 - R is a partial order on X
 - f is a function
 - $x \in \text{dom}(f)$ iff $(x \subseteq X \land \exists y \in x)$.
 - $\forall x \in \operatorname{dom}(f)(\exists y \in x(\forall z \in x(y \neq z \rightarrow yRz))).$

Putting these properties together, tells us that f is a function mapping a non-empty subset of X to a least element of X. Thus, they give a Δ_0 formula of the form that we want.

3. Suppose M and N satisfy the axioms of used in the proof of the representation theorem of well orders. Then, if (X, R) is a well-order, there is a unique ordinal α in M (and thus also in N) such that $(X, R) \cong (\alpha, \in)$. Now, the formula given in part (b) is upward absolute and the formula given in (a) is downward absolute.

(39)

1. The order is clearly irreflexive. Suppose (i, m)R(j, n)R(k, l). If i = 0 and j = 1, then k = 1, so (i, m)R(k, l). If i = j = 0 and m < n, then k = 1, or k = 0 and n < l. In either case, (i, m)R(k, l). If i = j = 1 and m > n, then k = 1 and n > l, so (i, m)R(k, l). Now suppose that $(i, m), (j, n) \in X$. If $i \neq j$, then the elements are comparable. Suppose i = j. If n = m, then (i, m) = (j, n), and if $n \neq m$, then the elements are again comparable. We conclude that R is a linear order.

We claim that R is not a well order. Let $A := \{(i, n) \in X \mid i = 0\}$. Clearly, this set is non-empty does not have a least element.

2. The inclusion $V_{\omega} \subseteq M$ is clear. It is also not difficult to see that $(0, n) \in V_{\omega}$ for any $n \in \omega$, so $\{0\} \times \omega \subset V_{\omega}$. It follows that $\mathcal{P}(\{0\} \times \omega) \subseteq V_{\omega+1}$. In a similar manner, we see that $X, R \subset V_{\omega}$, so $\{X, R\} \subseteq V_{\omega+1}$. We conclude that $M \subseteq V_{\omega+1}$.

We now check that M is transitive. Let $x \in M$. Suppose $x \in V_{\omega}$, then $x \subseteq M$ by the transitivity of V_{ω} . Suppose $x \in \mathcal{P}(\{0\} \times \omega)$, then $x \subseteq V_{\omega} \subseteq M$. In the same way, we saw that $X, R \subseteq V_{\omega} \subseteq M$. We conclude that M is transitive.

- 3. Let $A \subseteq X$ be non-empty and such that $A \in M$. Suppose $(0, n) \in A$ for some $n \in \omega$, then the set $\{(0, m) \in A \mid m \in \omega\}$ is non-empty and clearly the least m such that $(0, m) \in A$ is the least element of A. Suppose that $(0, n) \notin A$ for any $n \in \omega$. Note however that any subset of $\{(1, n) \mid n \in \omega\}$ that is in V_{ω} must have been added at some finite stage, and there is thus a largest m such that (1, m) lies in this subset. It follows that A has a least element. We conclude that any subset of X that lies in M has an R-least element.
- 4. *R* is a well order of *X* according to *M*, but not according to $V_{\omega+1}$. It follows that "*R* is a well order of *X*" is not absolute for transitive sets.