34. a) Let $\langle L,\langle \rangle$ be an infinite linearly-ordered set.

Choose an element $x_{0} \in L$.
Either the initial segment or the final segment at x_{0} must be infinite

If the initial segment is infinite, we may consider it as a final segment of the total order $>$.

From now on we consider the final segment

$$
x_{0}=\left\{x \in L \mid x_{0}<x\right\}
$$

Pick $x_{1} \in X_{0}$ and consider the final segment

$$
x_{1}=\left\{x \in L \mid x_{1}<x\right\}
$$

Define X_{n} and X_{n} recursively:

$$
x_{n}=\left\{x \in L \mid x_{n}<x\right\}
$$

Choose X_{n+1} from X_{n}
Then the set $X:=\left\{x_{n} \mid n \in \omega\right\}$ is an infinite subset of L that is well-ordered (as it corresponds to the integers with the usual ordering).

In the other case, define Y in the same way, reversing the inequality at every step.
b) Let us take a bounded sequence of real numbers

$$
\left\langle x_{n} \mid n \in \omega\right\rangle
$$

Then take the complete graph on the integers. Color the edge (i, j) blue if $i<j$ and $x_{i}<x_{j}$ and red otherwise

By Ramsey there exists a complete infinite subgraph in which every edge is blue or every edge is red.

If the subgraph is blue, then the subsequence given by the vertices is increasing. If it is red, the subsequence is decreasing.

In either case, we have a bounded and monotonichence convergent -subsequence.
c) Let $\langle P, \leq\rangle$ bs an infinite partially ordered $s \varepsilon+$.

Let P_{0} be a countably infinite sub-poset of P.
We go similarly to the previous problem:
Let $c:\left[p_{0}\right]^{2} \rightarrow 2$ be a map (essentially a coloring $\begin{array}{l}\text { of } \\ y\end{array} x^{\text {a }}$ graph $)$
defined by $C(\{x, y\})= \begin{cases}0 & x \leqslant y \wedge y * x^{a} \\ 1 & x \leqslant y \vee y \leqslant x\end{cases}$
Then by Ramsey $\exists C$ an infinite subset of P_{0} such that $\forall X \in[c]^{2}, c(X)=0$ or $c(X)=1$

If $C(x)=0$ then C is an antichain (unordered)
If $C(X)=1$ then C is a linear order
35. a) Let X b an infinite set and \mathcal{S} an infinite family of subsets. We can pick some element X_{0} of X.
Then let $S_{01}=\left\{S \in S \mid x_{0} \in S\right\}$ and $S_{02}=\left\{S \in S \mid x_{0} \notin S\right\}$
Then $S=S_{01} \cup S_{02}$ and S is infinite, so either S_{01} or S_{02} must be infinite. $S_{\varepsilon}+S_{0}=S_{01}$ if S_{01} is infinite ε and $S_{0}=S_{02}$ if S_{01} is not infinite.

Then pick $x_{1} \in X \backslash\left\{x_{0}\right\}$ so that $\left\{S \in S_{0} \mid x_{1} \in S\right\} \neq S_{0}$ and

$$
\left\{S \in S_{0} \mid x, \notin S\right\} \neq S_{0}
$$

Recursively define S_{n+1} in the same way, by

$$
\begin{aligned}
& S_{n+1}=\left\{S \in S_{n} \mid x_{n} \in S\right\} \\
& \text { or } \\
& S_{n+1}=\left\{S \in S_{n} \mid x_{n} \notin S\right\}
\end{aligned}
$$

depending on which is infinite, and then pick x_{n+1} so that $S_{n+2} \neq S_{n+1}$. Then $S_{n+1} \subsetneq S_{n} \quad \forall n \in \omega$.
b) Choose $S_{n} \in S_{n} \backslash S_{n+1}$ for every n.

Suppose that $x_{m} \in S_{m}$.

We also know that $S_{m} \notin S_{m+1}$
$\Longrightarrow S_{m+1}=\left\{S \in S_{m} \mid x_{m} \notin S\right\}$. Otherwise we would have $S_{m} \in S_{m+1}$

Now $\forall n>m \quad S_{n} \subseteq S_{m+1} \Rightarrow S_{n} \in S_{m+1}$

$$
\Rightarrow x_{m} \notin S_{n}
$$

Conversely, if $x_{m} \notin S_{m}$, then we get

$$
S_{m+1}=\left\{S \in S_{m} \mid x_{m} \in S\right\} .
$$

Then $\forall n>m \quad S_{n} \subseteq \mathbb{S}_{m+1} \Rightarrow S_{n} \in \mathbb{S}_{m+1}$

$$
\Rightarrow x_{m} \in S_{n}
$$

c) Consider the coloring $F:[\omega]^{2} \rightarrow 4$ given by: if $i<j$

$$
F(\{i, j\})= \begin{cases}0 & x_{i} \notin S_{j} \wedge x_{j} \notin S_{i} \\ 1 & x_{i} \notin S_{j} \wedge x_{j} \in S_{i} \\ 2 & x_{i} \in S_{j} \wedge x_{j} \& S_{i} \\ 3 & x_{i} \in S_{j} \wedge x_{j} \in S_{i}\end{cases}
$$

Then by Ramsey $\exists H \subseteq \omega$ such that F is constant on $[H]^{2}$ and H is countably infinite.
We now consider $M=\left\{\left\{m \in \omega \mid X_{m} \in S_{n}\right\} \mid n c \omega\right\}$
Suppose that
$r^{\text {image }}$ of $[H]^{2}$
(1) $F\left[[H]^{2}\right]=\{0\}$: Then $x_{m} \in S_{n} \Leftrightarrow m \notin n$ and $n \not 4 m$

$$
\begin{gathered}
\Rightarrow m=n \\
\Rightarrow M=\{\{n\} \mid n \in \omega\}=\mathcal{A} \\
\text { (2) } F\left[[H]^{2}\right]=\{1\}: T h \varepsilon n X_{m} \in S_{n} \Leftrightarrow m \notin n \Leftrightarrow m \geq n \\
\Rightarrow M=\{\omega \backslash n \mid n \in \omega\}=D
\end{gathered}
$$

(3) $F\left[[H]^{2}\right]=\{2\}:$ Then $x_{m} \in S_{n} \Leftrightarrow m<n$

$$
\Rightarrow M=\{\{j \in \omega \mid j<n\} \mid n \in \omega\}=\{n \mid n \in \omega\}=B
$$

(4) $F\left[[H]^{2}\right]=\{3\}$: Then $x_{m} \in S_{n} \Leftrightarrow m<n \vee n<m \Leftrightarrow m \neq n$ $\Rightarrow M=\{\omega \backslash\{n\} \mid n \in \omega\}=C$.
36. Enumerate \mathbb{Q} as $\left\langle q_{n}\right| n\langle\omega\rangle$ and define $T:[\mathbb{R}]^{2} \rightarrow \omega$ by $T(\{x, y\})=\min \left\{n \mid q_{n}\right.$ is strictly between x and $\left.y\right\}$
Let $\{x, y, z\}<\mathbb{R}$. WLOG we may say $x<y<z$
Then $T(\{x, y\})=n$ where $x<q_{n}<y$
and $T(\{y, z\})=m$ where $y<q_{m}<z$
$\Rightarrow q_{n}<q_{m} \Rightarrow n \neq m$. Hence $\{x, y, z\}$ cannot be a homogeneous set.

