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Every week, there will be one group interaction of roughly one hour. The group interactions
take place remotely via Zoom. A group interaction consists of two students who work together
on a work sheet in the presence of one of the two teaching assistants (Steef Hegeman or Robert
Paßmann). A group does not have to cover the entire work sheet. If you do not finish the work
sheet, feel free to return to it later or in the preparation of the exam.

Students are expected to actively participate in these group interaction sessions each week.
The group interaction score is the number of times a student actively participated in one of the
group interaction sessions (the maximum score is 10). [The score of students who are sitting the
Rudiments exam is multiplied by two (with a maximum score of 10).]

∗

In the first group interaction, we shall construct infinite graph models of weak set theories.
These constructions happen in näıve set theory and you are allowed to use all of the tools of
ordinary mathematics (i.e., recursion and induction) to prove things about your models.

(1) Let G = (V,E) be any directed graph. If v ∈ V , we write predG(v) := {w ∈ V ; w E v} for
the set of G-predecessors of v. We write [V ]≤2 for the set of all subsets of V having at most
two vertices. If Z ∈ [V ]≤2, we say that Z is covered in G if there is some v ∈ V such that
pred(v) = Z. Otherwise, we say that Z is uncovered in G.

Draw an example (directed) graph with four vertices. It has
(

4
1

)
= 4 one-vertex subsets and(

4
2

)
= 6 two-vertex subsets. Check which of these are covered and uncovered.

(2) The directed graph p(G) := (V ∗, E∗) is called the pairing augmentation of G if V ∗ consists of all
of the vertices of V plus a set of new vertices V + such that each new vertex v ∈ V + corresponds
to exactly one set Z ∈ [V ]≤2 that is uncovered in G with predp(G)(v) = Z. Furthermore, for
each v ∈ V , predG(v) = predp(G)(v).

Take your example graph from (1) and draw its pairing augmentation.

(3) Repeat the process: now take the pairing augmentation of your original four-vertex graph from
(2), and draw its pairing augmentation.

(4) Given any directed graph G, we define by recursion

G0 := G and

Gn+1 := p(Gn).

Write Gn := (Vn, En) and define V∞ :=
⋃

n∈N Vn and E∞ :=
⋃

n∈NEn. We call the directed
graph G∞ := (V∞, E∞) the pairing closure of G.

Show that for every directed graph G, G∞ is a model of the pairing axiom.

(5) A directed graph G is called extensional if it is a model of the axiom of extensionality. Show
that if G is extensional, then so is p(G).

(6) Show that if G is extensional, then so is G∞.



(7) Let now H := ({e},∅), the directed graph with a single vertex e and apply the pairing closure
operation to it. First get a feeling for the construction by drawing H1, H2, H3, and H4.

(8) By (4) and (5), H∞ is a model of pairing and extensionality. Check whether the union axiom
and the power set axiom hold in H∞.

(9) Formulate the result from (8) as a statement about strength of axiom systems, i.e., in the form
“T is strictly stronger than S”.

(10) Show that H∞ satisfies the axiom scheme of separation.

[Hint. Show first that for every vertex v ∈ H∞, we have that pred(v) has at most two ele-
ments. This helps us to reduce the claim of the axiom scheme of separation to something more
manageable.]

(11) Let H′ be the directed graph with two vertices and no edges. (As discussed in Lecture I, this
does not satisfy Extensionality.) Check the other axioms in H′∞ and formulate your findings
in terms of strength of axiom systems as in (9).

(12) Is it possible to use the construction of pairing closure to get a directed graph that does not
satisfy the axiom scheme of separation?

(13) We are now going to define a different graph construction: again, let G = (V,E) be an arbitrary
directed graph.

For each v ∈ V , we can consider P (v) := {w ∈ V ; w is a G-subset of v} ⊆ V . We call a vertex
v handled in G if there is some w ∈ V such that predG(w) = P (v). Otherwise, we say that v
is unhandled in G.

Check the status of handled and unhandled vertices in your example graph from (1).

(14) The power set augmentation of G is defined in the same way as the pairing augmentation, but
the new vertices in V + have as predecessors precisely the sets P (v) for a vertex v that was
unhandled in G. We write pow(G) for the power set augmentation of G and define the power
set closure in the same way.

Show that if G is extensional, then the power set closure of G is extensional.

(15) Show that if G is extensional and locally finite (i.e., every vertex has only finitely many pre-
decessors), then the power set closure of G satisfies the power set axiom.

[Hint. Notice that extensionality means that if v has n predecessors, there can be at most
2n many elements of P (v). Observe that this means that after finitely many stages of the
construction, all of them have appeared.]

(16) Using H := ({e},∅) from (7), consider its power set closure. First, draw stages 1 to 4 in that
construction to get a feeling for the construction.

(17) Check the validity of the union axiom, and the axiom scheme of separation in the power set
closure of H and express your result in terms of strength of axiom systems as in (9).

(18) Think about whether the techniques of pairing closure and power set closure could be combined
to give models that satisfy both the pairing axiom and the power set axiom.
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