Capita Selecta: Set Theory 2020/21: 1st Semester; block 1 Universiteit van Amsterdam L. Galeotti, B. Löwe

ANALYTIC DETERMINACY

Notation. Fix a bijection $i \mapsto s_i$ from $\omega \to \omega^{<\omega}$ such that if $s_i \subseteq s_j$, then $i \leq j$. (This implies that $\ln(s_i) \leq i$.) Let $T \subseteq (\omega \times \omega)^{<\omega}$ be a tree, $x \in \omega^{\omega}$, and $s \in \omega^{<\omega}$. Then we let

$$T_s := \{t \in \omega^{<\omega} ; (s \restriction \ln(t), t) \in T\},$$

$$T_x := \{t \in \omega^{<\omega} ; (x \restriction \ln(t), t) \in T\} = \bigcup_{n \in \mathbb{N}} T_{x \restriction n}$$

$$K_s := \{i \leq \ln(s) ; s_i \in T_s\}, \text{ and}$$

$$K_x := \{i \in \omega ; s_i \in T_x\} = \bigcup_{n \in \mathbb{N}} K_{x \restriction n}.$$

We note that T_s is a tree of finite height (every element $t \in T_s$ has length $\leq \ln(s)$) and that K_s is a finite set. We observe that $T_x = \{s_i; i \in K_x\}$ (but, in general, $T_s \not\supseteq \{s_i; i \in K_s\}$).

We remember that if $A \in \Pi^1_1$, then there is a tree T on $\omega \times \omega$ such that

 $x \in A$ if and only if (T_x, \supsetneq) is wellfounded

if and only if $(T_x, <_{\text{KB}})$ is wellordered

if and only if there is an order preserving map from $(T_x, <_{\rm KB})$ to $(\omega_1, <)$

where $<_{\text{KB}}$ is the Kleene-Brouwer order on $\omega^{<\omega}$. For any $s \in \omega^{<\omega}$, we write $<_s$ for the order induced by the Kleene-Brouwer order on $\omega^{<\omega}$ on K_s , i.e., $i <_s j$ if and only if $s_i <_{\text{KB}} s_j$. Note that since K_s is finite, $(K_s, <_s)$ is a (finite) wellorder.

Let S be any tree on ω and κ be an uncountable cardinal. A function $g: \omega \to \kappa$ is called a KB-code for S if for all i and j such that $s_i, s_j \in S$, we have that $s_i <_{\text{KB}} s_j \leftrightarrow g(i) < g(j)$. Clearly, there is an order preserving map from $(S, <_{\text{KB}})$ to $(\omega_1, <)$ if and only if there is a KB-code for S, so we can add the following equivalence to the above characterisation of Π_1^1 sets:

 $x \in A$ if and only if there is a KB-code for T_x

Shoenfield's Theorem. We first prove a tree representation theorem for Π_1^1 sets.

Theorem 1 (Shoenfield). If κ is uncountable, then every Π_1^1 set is κ -Suslin.

Proof. Let $A \in \Pi_1^1$ and let T be a tree on $\omega \times \omega$ such that $x \in A$ if and only if there is a KB-code for T_x . Let M be the set of all partial functions from ω into κ with finite domain. Note that $|M| = \kappa$, so it is sufficient to show that A is M-Suslin. If $s \in \omega^{<\omega}$ and $u \in M^{<\omega}$ such that $\ln(h) \leq \ln(s)$, we say that u is coherent with s if

- (1) for all i < lh(u), we have that $\text{dom}(u_i) = K_{s \upharpoonright i}$,
- (2) for all i < lh(u), u(i) is an order preserving map from $(K_{s \uparrow i}, <_{\text{KB}})$ into $(\kappa, <)$, and
- (3) for $i \leq j$, we have that $u_i \subseteq u_j$.

We now define the Shoenfield tree on $\omega \times M$ by $\widehat{T} := \{(s, u); u \text{ is coherent with } s\}$ and claim that $A = p[\widehat{T}]$:

"⊆": If $x \in A$, then let $g : \omega \to \kappa$ be a KB-code for T_x and define $u(i) := g \upharpoonright K_{x \upharpoonright i}$. By definition, $u \upharpoonright n$ is coherent with $x \upharpoonright n$ for all n, and so $(x, u) \in [\widehat{T}]$.

"⊇": If $x \in p[\widehat{T}]$, find $u \in M^{\omega}$ such that $(x, u) \in [\widehat{T}]$; this means that for each $n, u \upharpoonright n$ is coherent with $x \upharpoonright n$. As noted above, we have that $T_x = \{s_i ; i \in K_x\} = \{s_i ; \exists n(i \in \text{dom}(u(n)))\}$. We define $\widehat{u} := \bigcup \{u(i) ; i \in \omega\}$. By coherence, \widehat{u} is a function from K_x to κ ; now we define

$$g: \omega \to \kappa: n \mapsto \begin{cases} \widehat{u}(n) & \text{if } n \in K_x \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

We claim that g is a KB-code for T_x whence $x \in A$: Suppose not, then there are i and j such that $s_i, s_j \in T_x$ and $s_i <_{\text{KB}} s_j \not\leftrightarrow g(i) < g(j)$. Since $i, j \in K_x$, find n large enough such that $i, j \in K_{x \restriction n}$. By definition $g \upharpoonright K_{x \restriction n} = u(n)$. But this means that u(n) is not an order preserving map from $(K_{x \restriction n}, <_{\text{KB}})$ into $(\kappa, <)$, violating condition (3) of coherence. Q.E.D

Measurable Cardinals. Let X be a set. A non-empty family $U \subseteq \wp(X)$ is called a *ultrafilter over* X if for any $A, B \subseteq X$, we have that

- (1) if $A, B \in U$, then $A \cap B \in U$,
- (2) if $A \in U$ and $B \supseteq A$, then $B \in U$, and
- (3) if $A \notin U$, then $X \setminus A \in U$.

We say that an ultrafilter is *non-trivial* if it does not contain any finite sets and if κ is any cardinal, it is called κ -complete if it is closed under intersections of size $< \kappa$. Note that ω -completeness follows from (1). A non-trivial κ -complete ultrafilter cannot contain any sets of size $< \kappa$.

 $[If |A| = \lambda < \kappa, \text{ then for each } a \in A, \{a\} \notin U, \text{ so by (3), } X \setminus \{a\} \in U, \text{ but then by } \kappa \text{-completeness, } X \setminus A = \bigcap \{X \setminus \{a\}; a \in A\} \in U.$ If now $A \in U$, then $\emptyset = A \cap X \setminus A \in U$. Contradiction to non-triviality.]

An uncountable cardinal κ is called *measurable* if there is a κ -complete non-trivial ultrafilter on κ . The Axiom of Choice implies that there are non-trivial ultrafilters on ω ; as mentioned, they are ω -complete, so \aleph_0 technically satisfies the conditions of the definition. The existence of uncountable measurable cardinals cannot be proved in ZFC and is a so-called *large cardinal axiom*. More precisely, if MC stands for "there is a measurable cardinal", then for every model $M \models \mathsf{ZFC} + \mathsf{MC}$, I can find a submodel $N \subseteq M$ such that $N \models \mathsf{ZFC} + \neg \mathsf{MC}$.

Being measurable has interesting consequences for the combinatorics on κ . We are going to use one of them in our proof of analytic determinacy. As usual, we denote by $[\kappa]^n$ the set of *n*-element subsets of κ . A function $f: [\kappa]^n \to \omega$ is called an *n*-colouring and a set *H* is called homogeneous for *f* if $f \upharpoonright [H]^n$ is constant. We call *f* a finite colouring if it is an *n*-colouring for some natural number $n \in \mathbb{N}$.

Theorem 2 (Rowbottom). If κ is measurable, then for every countable set $\{f_s; s \in S\}$ of finite colourings, there is a set H of size κ that is homogeneous for all colourings f_s .

In our proof of analytic determinacy, we are only going to use Rowbottom's Theorem, no other properties of measurable cardinals; so, for our purposes, one could take the statement of Rowbottom's Theorem as the assumption for analytic determinacy in the next section.

Analytic Determinacy. If Γ is a boldface pointclass, then $\text{Det}(\Gamma)$ is equivalent to $\text{Det}(\tilde{\Gamma})$. Thus, analytic determinacy and co-analytic determinacy are equivalent.

Theorem 3 (Martin, 1969/70). If there is a measurable cardinal, then every co-analytic set is determined.

Proof. Let κ be a measurable cardinal and $A \in \Pi_1^1$. We aim to show that the game G(A) is determined. By (the proof of) Shoenfield's Theorem, we know that there is a tree \hat{T} on $\omega \times M$ such that $A = p[\hat{T}]$. (Remember that M was the set of partial functions from ω to κ with finite domain.) We are going to define a (determined) game $G_{aux}(\hat{T})$ based on the Shoenfield tree and show that a winning strategy for either player in $G_{aux}(\hat{T})$ can be transformed into a winning strategy for the same player in the *original game* G(A). This proves the theorem.

In the auxiliary game, player I plays elements of $\omega \times M$ and player II plays elements of ω as follows:

We obtain a sequence $x \in \omega^{\omega}$ with $x(n) := x_n$ and a sequence $u \in M^{\omega}$ with $u(n) := u_n$. Player I wins $G_{aux}(\widehat{T})$ if $(x, u) \in [\widehat{T}]$. Note that $G_{aux}(\widehat{T})$ is a closed game on $\omega \times M$, thus by the Gale-Stewart Theorem, it is determined.

Let us make a number of observations about the relationship between the original game G(A) and the auxiliary game $G_{aux}(\hat{T})$. We call the moves u_i auxiliary moves. If p is a position in the auxiliary game (i.e., a finite sequence of elements of ω and elements of M in the right order), then we can define a position p^* in the original game by forgetting about the auxiliary moves. This allows us to consider strategies τ for player II in the original game as strategies in the auxiliary game: if p is a position in the auxiliary game, we let $\tau_*(p) := \tau(p^*)$, i.e., just forget about the auxiliary moves and play as if you were playing in the original game.

Lemma 4. If player I has a winning strategy in $G_{aux}(\widehat{T})$, then they have a winning strategy in G(A).

Proof. Suppose σ is a winning strategy in $G_{aux}(\hat{T})$ and τ is any strategy for player II in the original game. As just mentioned, then τ_* is the version of that strategy in $G_{aux}(\hat{T})$. Since σ is winning, we know that $\sigma * \tau_* = (x, u) \in [\hat{T}]$. Define a strategy σ^* in the original game as follows: while player II plays natural number moves according to τ , you produce the auxiliary play $\sigma * \tau_*$ on an auxiliary board. If that auxiliary game tells you to produce a position p by your next move, then you produce the move p^* in the original game. Then $\sigma^* * \tau = x$, and thus $x \in p[\hat{T}] = A$, so σ^* is winning. Q.E.D

Lemma 5. If player II has a winning strategy in $G_{aux}(\hat{T})$, then they have a winning strategy in G(A).

Proof. Let $s \in \omega^{<\omega}$. Let $k_s := |K_s|$. If $Q \in [\kappa]^{k_s}$, then there is a unique order preserving map $w : (K_s, <_s) \to (Q, <)$. Let $u_i^{s,Q} := w \upharpoonright K_{s \upharpoonright i}$. Then $(u_i^{s,Q}; i < \ln(s))$ is coherent with s. Thus, if you fix some $Q \in [\kappa]^{k_s}$, you can transform a position s in the original game into a position $s_{*,Q}$ in the auxiliary game in such a way that the auxiliary moves produce Q as the range and form a sequence coherent with the position s.

Let now τ be a strategy for player II in the auxiliary game. For each $s \in \omega^{<\omega}$, we define a k_s -colouring $f_s : [\kappa]^{k_s} \to \omega$ by $f_s(Q) := \tau(s_{*,Q})$: we colour the k_s -element subsets of κ by the answer that the strategy τ gives to the position s augmented via Q in the sense given above. By Rowbottom's theorem, there is a set $H \subseteq \kappa$ of size κ that is homogeneous for all functions f_s , i.e., if $Q, Q' \in [H]^{k_s}$, then $\tau(s_{*,Q}) = f_s(Q) = f_s(Q') = \tau(s_{*,Q'})$, so the answer of the strategy τ does not depend on the set Q as long as it is a subset of H. In particular, we can take the simplest imaginable subset of H with k_s elements: let $Q_{H,s}$ be the set consisting of the first k_s many elements of H.

Now, we define a strategy τ_H for player II in the original game by $\tau_H(s) := \tau(s_{*,Q_{H,s}})$. (Note that the precise choice of the set $Q_{H,s}$ is irrelevant in this definition by homogeneity, since $f_s(Q_{H,s}) = f_s(Q)$ for any $Q \in [H]^{k_s}$.)

We prove that if τ was winning in the auxiliary game, then τ_H is winning in the original game. Suppose not, so there is a counterstrategy σ such that $x := \sigma * \tau_H \in A$. This means (since H is uncountable) that there is an orderpreserving map from $(T_x, <_{\rm KB})$ to (H, <) giving rise to a KB-code $g : \omega \to H$ for T_x . Using the KB-code g, we can now define $u_i := g \upharpoonright K_{x \upharpoonright i}$ and consider the play of the auxiliary game

producing $(x, u) \in [\widehat{T}]$. We claim that this is a play according to τ , so we need to show that for every $i \in \mathbb{N}$, the play by player II is the τ -answer to the previous position, i.e., $x_{2i+1} = \tau(x_0, u_0, x_1, ..., x_{2i}, u_i)$. Fix $i \in \mathbb{N}$ and consider $Q := \operatorname{ran}(u_i) \subseteq H$. Then we have that $(x_0, u_0, x_1, ..., x_{2i}, u_i) = (x \upharpoonright 2i + 1)_{*,Q}$. We see that

(10 - 1)

$$\begin{aligned} x_{2i+1} &= \tau_H(x|2i+1) & \text{(since } x \text{ was produced by } \tau_H) \\ &= \tau((x|2n+1)_{*,Q_{H,s}}) & \text{(by definition of } \tau_H) \\ &= \tau((x|2n+1)_{*,Q}) & \text{(since the choice of } Q \text{ doesn't matter by homogeneity}) \\ &= \tau(x_0, u_0, x_1, \dots, x_{2i}, u_i), \end{aligned}$$

so the above play is a play according to τ . But that is a contradiction, since τ was winning for player II, and so $(x, u) \notin [\hat{T}]$. Q.E.D

Lemmas 4 & 5 together with the fact that $G_{aux}(\hat{T})$ was determined (since it is a closed game) imply that G(A) is determined. Q.E.D