Analytic Determinacy

Notation. Fix a bijection $i \mapsto s_{i}$ from $\omega \rightarrow \omega^{<\omega}$ such that if $s_{i} \subseteq s_{j}$, then $i \leq j$. (This implies that $\operatorname{lh}\left(s_{i}\right) \leq i$.) Let $T \subseteq(\omega \times \omega)^{<\omega}$ be a tree, $x \in \omega^{\omega}$, and $s \in \omega^{<\omega}$. Then we let

$$
\begin{aligned}
T_{s} & :=\left\{t \in \omega^{<\omega} ;(s\lceil\operatorname{lh}(t), t) \in T\},\right. \\
T_{x} & :=\left\{t \in \omega^{<\omega} ;(x \upharpoonright \operatorname{lh}(t), t) \in T\right\}=\bigcup_{n \in \mathbb{N}} T_{x \upharpoonright n}, \\
K_{s} & :=\left\{i \leq \ln (s) ; s_{i} \in T_{s}\right\}, \text { and } \\
K_{x} & :=\left\{i \in \omega ; s_{i} \in T_{x}\right\}=\bigcup_{n \in \mathbb{N}} K_{x\lceil n} .
\end{aligned}
$$

We note that T_{s} is a tree of finite height (every element $t \in T_{s}$ has length $\leq \operatorname{lh}(s)$) and that K_{s} is a finite set. We observe that $T_{x}=\left\{s_{i} ; i \in K_{x}\right\}$ (but, in general, $T_{s} \supsetneqq\left\{s_{i} ; i \in K_{s}\right\}$).

We remember that if $A \in \Pi_{1}^{1}$, then there is a tree T on $\omega \times \omega$ such that

$$
\begin{aligned}
& x \in A \text { if and only if }\left(T_{x}, \supsetneqq\right) \text { is wellfounded } \\
& \quad \text { if and only if }\left(T_{x},<_{\mathrm{KB}}\right) \text { is wellordered } \\
& \quad \text { if and only if there is an order preserving map from }\left(T_{x},<_{\mathrm{KB}}\right) \text { to }\left(\omega_{1},<\right)
\end{aligned}
$$

where $<_{\text {кв }}$ is the Kleene-Brouwer order on $\omega^{<\omega}$. For any $s \in \omega^{<\omega}$, we write $<_{s}$ for the order induced by the Kleene-Brouwer order on $\omega^{<\omega}$ on K_{s}, i.e., $i<_{s} j$ if and only if $s_{i}<_{\mathrm{KB}} s_{j}$. Note that since K_{s} is finite, ($K_{s},<_{s}$) is a (finite) wellorder.

Let S be any tree on ω and κ be an uncountable cardinal. A function $g: \omega \rightarrow \kappa$ is called a $K B$-code for S if for all i and j such that $s_{i}, s_{j} \in S$, we have that $s_{i}<_{\text {кв }} s_{j} \leftrightarrow g(i)<g(j)$. Clearly, there is an order preserving map from $\left(S,<_{\mathrm{KB}}\right)$ to ($\omega_{1},<$) if and only if there is a KB-code for S, so we can add the following equivalence to the above characterisation of $\boldsymbol{\Pi}_{1}^{1}$ sets:

$$
x \in A \text { if and only if there is a KB-code for } T_{x}
$$

Shoenfield's Theorem. We first prove a tree representation theorem for $\boldsymbol{\Pi}_{1}^{1}$ sets.
Theorem 1 (Shoenfield). If κ is uncountable, then every Π_{1}^{1} set is κ-Suslin.
Proof. Let $A \in \Pi_{1}^{1}$ and let T be a tree on $\omega \times \omega$ such that $x \in A$ if and only if there is a KB-code for T_{x}. Let M be the set of all partial functions from ω into κ with finite domain. Note that $|M|=\kappa$, so it is sufficient to show that A is M-Suslin. If $s \in \omega^{<\omega}$ and $u \in M^{<\omega}$ such that $\operatorname{lh}(h) \leq \operatorname{lh}(s)$, we say that u is coherent with s if
(1) for all $i<\operatorname{lh}(u)$, we have that $\operatorname{dom}\left(u_{i}\right)=K_{s \backslash i}$,
(2) for all $i<\operatorname{lh}(u), u(i)$ is an order preserving map from $\left(K_{s \mid i},<_{\mathrm{KB}}\right)$ into $(\kappa,<)$, and
(3) for $i \leq j$, we have that $u_{i} \subseteq u_{j}$.

We now define the Shoenfield tree on $\omega \times M$ by $\widehat{T}:=\{(s, u) ; u$ is coherent with $s\}$ and claim that $A=\mathrm{p}[\widehat{T}]$:
" \subseteq ": If $x \in A$, then let $g: \omega \rightarrow \kappa$ be a KB-code for T_{x} and define $u(i):=g \upharpoonright K_{x\lceil i}$. By definition, $u\lceil n$ is coherent with $x\lceil n$ for all n, and so $(x, u) \in[\widehat{T}]$.
" \supseteq ": If $x \in \mathrm{p}[\widehat{T}]$, find $u \in M^{\omega}$ such that $(x, u) \in[\widehat{T}]$; this means that for each $n, u\lceil n$ is coherent with $x\lceil n$. As noted above, we have that $T_{x}=\left\{s_{i} ; i \in K_{x}\right\}=\left\{s_{i} ; \exists n(i \in \operatorname{dom}(u(n))\}\right.$. We define $\widehat{u}:=\bigcup\{u(i) ; i \in \omega\}$. By coherence, \widehat{u} is a function from K_{x} to κ; now we define

$$
g: \omega \rightarrow \kappa: n \mapsto\left\{\begin{array}{cl}
\widehat{u}(n) & \text { if } n \in K_{x} \text { and } \\
0 & \text { otherwise. }
\end{array}\right.
$$

We claim that g is a KB-code for T_{x} whence $x \in A$: Suppose not, then there are i and j such that $s_{i}, s_{j} \in T_{x}$ and $s_{i}<_{\mathrm{KB}} s_{j} \not \leftrightarrow g(i)<g(j)$. Since $i, j \in K_{x}$, find n large enough such that $i, j \in K_{x \uparrow n}$. By definition $g \upharpoonright K_{x \upharpoonright n}=u(n)$. But this means that $u(n)$ is not an order preserving map from ($K_{x \upharpoonright n},<_{\text {KB }}$) into ($\kappa,<$), violating condition (3) of coherence.
Q.E.D

Measurable Cardinals. Let X be a set. A non-empty family $U \subseteq \wp(X)$ is called a ultrafilter over X if for any $A, B \subseteq X$, we have that
(1) if $A, B \in U$, then $A \cap B \in U$,
(2) if $A \in U$ and $B \supseteq A$, then $B \in U$, and
(3) if $A \notin U$, then $X \backslash A \in U$.

We say that an ultrafilter is non-trivial if it does not contain any finite sets and if κ is any cardinal, it is called κ-complete if it is closed under intersections of size $<\kappa$. Note that ω-completeness follows from (1). A non-trivial κ-complete ultrafilter cannot contain any sets of size $<\kappa$.
[If $|A|=\lambda<\kappa$, then for each $a \in A,\{a\} \notin U$, so by (3), $X \backslash\{a\} \in U$, but then by κ-completeness, $X \backslash A=\bigcap\{X \backslash\{a\} ; a \in A\} \in$ U. If now $A \in U$, then $\varnothing=A \cap X \backslash A \in U$. Contradiction to non-triviality.]

An uncountable cardinal κ is called measurable if there is a κ-complete non-trivial ultrafilter on κ. The Axiom of Choice implies that there are non-trivial ultrafilters on ω; as mentioned, they are ω-complete, so \aleph_{0} technically satisfies the conditions of the definition. The existence of uncountable measurable cardinals cannot be proved in ZFC and is a so-called large cardinal axiom. More precisely, if MC stands for "there is a measurable cardinal", then for every model $M \models \mathrm{ZFC}+\mathrm{MC}$, I can find a submodel $N \subseteq M$ such that $N \models$ ZFC $+\neg$ MC.

Being measurable has interesting consequences for the combinatorics on κ. We are going to use one of them in our proof of analytic determinacy. As usual, we denote by $[\kappa]^{n}$ the set of n-element subsets of κ. A function $f:[\kappa]^{n} \rightarrow \omega$ is called an n-colouring and a set H is called homogeneous for f if $f \upharpoonright[H]^{n}$ is constant. We call f a finite colouring if it is an n-colouring for some natural number $n \in \mathbb{N}$.

Theorem 2 (Rowbottom). If κ is measurable, then for every countable set $\left\{f_{s} ; s \in S\right\}$ of finite colourings, there is a set H of size κ that is homogeneous for all colourings f_{s}.

In our proof of analytic determinacy, we are only going to use Rowbottom's Theorem, no other properties of measurable cardinals; so, for our purposes, one could take the statement of Rowbottom's Theorem as the assumption for analytic determinacy in the next section.

Analytic Determinacy. If $\boldsymbol{\Gamma}$ is a boldface pointclass, then $\operatorname{Det}(\boldsymbol{\Gamma})$ is equivalent to $\operatorname{Det}(\breve{\boldsymbol{\Gamma}})$. Thus, analytic determinacy and co-analytic determinacy are equivalent.

Theorem 3 (Martin, 1969/70). If there is a measurable cardinal, then every co-analytic set is determined.
Proof. Let κ be a measurable cardinal and $A \in \boldsymbol{\Pi}_{1}^{1}$. We aim to show that the game $\mathrm{G}(A)$ is determined. By (the proof of) Shoenfield's Theorem, we know that there is a tree \widehat{T} on $\omega \times M$ such that $A=\mathrm{p}[\widehat{T}]$. (Remember that M was the set of partial functions from ω to κ with finite domain.) We are going to define a (determined) game $\mathrm{G}_{\text {aux }}(\widehat{T})$ based on the Shoenfield tree and show that a winning strategy for either player in $\mathrm{G}_{\text {aux }}(\widehat{T})$ can be transformed into a winning strategy for the same player in the original game $\mathrm{G}(A)$. This proves the theorem.

In the auxiliary game, player I plays elements of $\omega \times M$ and player II plays elements of ω as follows:

I	x_{0}, u_{0}		x_{2}, u_{1}		x_{4}, u_{2}		x_{6}, u_{3}	
II		x_{1}		x_{3}		x_{5}		x_{7}
\cdots								

We obtain a sequence $x \in \omega^{\omega}$ with $x(n):=x_{n}$ and a sequence $u \in M^{\omega}$ with $u(n):=u_{n}$. Player I wins $\mathrm{G}_{\text {aux }}(\widehat{T})$ if $(x, u) \in[\widehat{T}]$. Note that $\mathrm{G}_{\text {aux }}(\widehat{T})$ is a closed game on $\omega \times M$, thus by the Gale-Stewart Theorem, it is determined.

Let us make a number of observations about the relationship between the original game $\mathrm{G}(A)$ and the auxiliary game $\mathrm{G}_{\mathrm{aux}}(\widehat{T})$. We call the moves u_{i} auxiliary moves. If p is a position in the auxiliary game (i.e., a finite sequence of elements of ω and elements of M in the right order), then we can define a position p^{*}
in the original game by forgetting about the auxiliary moves. This allows us to consider strategies τ for player II in the original game as strategies in the auxiliary game: if p is a position in the auxiliary game, we let $\tau_{*}(p):=\tau\left(p^{*}\right)$, i.e., just forget about the auxiliary moves and play as if you were playing in the original game.
Lemma 4. If player I has a winning strategy in $\mathrm{G}_{\text {aux }}(\widehat{T})$, then they have a winning strategy in $\mathrm{G}(A)$.
Proof. Suppose σ is a winning strategy in $\mathrm{G}_{\text {aux }}(\widehat{T})$ and τ is any strategy for player II in the original game. As just mentioned, then τ_{*} is the version of that strategy in $\mathrm{G}_{\text {aux }}(\widehat{T})$. Since σ is winning, we know that $\sigma * \tau_{*}=(x, u) \in[\widehat{T}]$. Define a strategy σ^{*} in the original game as follows: while player II plays natural number moves according to τ, you produce the auxiliary play $\sigma * \tau_{*}$ on an auxiliary board. If that auxiliary game tells you to produce a position p by your next move, then you produce the move p^{*} in the original game. Then $\sigma^{*} * \tau=x$, and thus $x \in \mathrm{p}[\widehat{T}]=A$, so σ^{*} is winning.
Q.E.D

Lemma 5. If player II has a winning strategy in $\mathrm{G}_{\text {aux }}(\widehat{T})$, then they have a winning strategy in $\mathrm{G}(A)$.
Proof. Let $s \in \omega^{<\omega}$. Let $k_{s}:=\left|K_{s}\right|$. If $Q \in[\kappa]^{k_{s}}$, then there is a unique order preserving map $w:\left(K_{s},<_{s}\right) \rightarrow(Q,<)$. Let $u_{i}^{s, Q}:=w \upharpoonright K_{s \upharpoonright i}$. Then $\left(u_{i}^{s, Q} ; i<\operatorname{lh}(s)\right)$ is coherent with s. Thus, if you fix some $Q \in[\kappa]^{k_{s}}$, you can transform a position s in the original game into a position $s_{*, Q}$ in the auxiliary game in such a way that the auxiliary moves produce Q as the range and form a sequence coherent with the position s.

Let now τ be a strategy for player II in the auxiliary game. For each $s \in \omega^{<\omega}$, we define a k_{s}-colouring $f_{s}:[\kappa]^{k_{s}} \rightarrow \omega$ by $f_{s}(Q):=\tau\left(s_{*, Q}\right)$: we colour the k_{s}-element subsets of κ by the answer that the strategy τ gives to the position s augmented via Q in the sense given above. By Rowbottom's theorem, there is a set $H \subseteq \kappa$ of size κ that is homogeneous for all functions f_{s}, i.e., if $Q, Q^{\prime} \in[H]^{k_{s}}$, then $\tau\left(s_{*, Q}\right)=f_{s}(Q)=$ $f_{s}\left(Q^{\prime}\right)=\tau\left(s_{*}, Q^{\prime}\right)$, so the answer of the strategy τ does not depend on the set Q as long as it is a subset of H. In particular, we can take the simplest imaginable subset of H with k_{s} elements: let $Q_{H, s}$ be the set consisting of the first k_{s} many elements of H.

Now, we define a strategy τ_{H} for player II in the original game by $\tau_{H}(s):=\tau\left(s_{*, Q_{H, s}}\right)$. (Note that the precise choice of the set $Q_{H, s}$ is irrelevant in this definition by homogeneity, since $f_{s}\left(Q_{H, s}\right)=f_{s}(Q)$ for any $Q \in[H]^{k_{s}}$.)

We prove that if τ was winning in the auxiliary game, then τ_{H} is winning in the original game. Suppose not, so there is a counterstrategy σ such that $x:=\sigma * \tau_{H} \in A$. This means (since H is uncountable) that there is an orderpreserving map from $\left(T_{x},<_{K B}\right)$ to $(H,<)$ giving rise to a KB-code $g: \omega \rightarrow H$ for T_{x}. Using the KB-code g, we can now define $u_{i}:=g \upharpoonright K_{x \upharpoonright i}$ and consider the play of the auxiliary game

producing $(x, u) \in[\widehat{T}]$. We claim that this is a play according to τ, so we need to show that for every $i \in \mathbb{N}$, the play by player II is the τ-answer to the previous position, i.e., $x_{2 i+1}=\tau\left(x_{0}, u_{0}, x_{1}, \ldots, x_{2 i}, u_{i}\right)$. Fix $i \in \mathbb{N}$ and consider $Q:=\operatorname{ran}\left(u_{i}\right) \subseteq H$. Then we have that $\left(x_{0}, u_{0}, x_{1}, \ldots, x_{2 i}, u_{i}\right)=(x \upharpoonright 2 i+1)_{*, Q}$. We see that

$$
\begin{aligned}
x_{2 i+1} & =\tau_{H}(x \upharpoonright 2 i+1) & & \text { (since } \left.x \text { was produced by } \tau_{H}\right) \\
& =\tau\left((x \upharpoonright 2 n+1)_{*, Q_{H, s}}\right) & & \text { (by definition of } \left.\tau_{H}\right) \\
& =\tau\left((x \upharpoonright 2 n+1)_{*, Q}\right) & & \text { (since the choice of } Q \text { doesn't matter by homogeneity) } \\
& =\tau\left(x_{0}, u_{0}, x_{1}, \ldots, x_{2 i}, u_{i}\right), & &
\end{aligned}
$$

so the above play is a play according to τ. But that is a contradiction, since τ was winning for player II, and so $(x, u) \notin[\widehat{T}]$.
Q.E.D

Lemmas $4 \& 5$ together with the fact that $\mathrm{G}_{\text {aux }}(\widehat{T})$ was determined (since it is a closed game) imply that $\mathrm{G}(A)$ is determined.
Q.E.D

