Comments on the Template Exam Set Theory

MasterMath: 1st Semester 2020/21
K. P. Hart, B. Löwe, E. Schoen, N. Wontner

December 2020

PART I.

This part of the exam is mandatory. You will not be able to pass without answering both questions in Part I. A satisfactory answer to both questions will guarantee that you pass.

This is the most important part of the exam and you should allocate the majority of the time in the exam to it. You should definitely complete Part I before starting to work on Part II. It is advisable not to start writing immediately, but to first structure your thoughts in order to produce a "well-structured" answer (see below).

The two questions in Part I ask you to describe either mathematical concepts or mathematical proofs in your own words. Your answer will be marked according to whether it is correct, comprehensive, and well-structured. An answer is comprehensive if all of the important mathematical ideas are discussed and explained.

An answer will be considered good if all three criteria are satisfied.
It will be considered satisfactory if it has minor deficiencies in some of the three criteria. E.g., fixable errors in definitions or arguments would be considered a minor deficiency in correctness, the omission of one among several ideas or proof steps would be considered a deficiency in comprehensivity, a general lack of structure or confused prose would be considered a deficiency in being well-structured.

It will be considered unsatisfactory if it has a major deficiency in either correctness or comprehensivity, e.g., a flaw in a definition that invalidates the argument, a major error in an argument, or omitting the main idea of the proof would be considered major deficiencies.

If both of your answers in Part I are marked as satisfactory, you are guaranteed to pass the exam. The maximum number of points to be awarded in Part I is seven (in case both of your answers are marked as good).

On pages 3 to 8 of this document, we provide answers to both questions of Part I in the Template Exam. The given answers would be marked as good.

PART II.

This part of the exam is optional and not required for passing the exam. You can answer as many questions as you like. Each question is worth one point. You can only obtain a total exam score higher than 7 points if you answer questions in Part II of the exam.
In your answers, you may use all theorems proved in class without proof, provided that you state them precisely and correctly and give a reference to Jech's book (by page number or theorem number) or to the handwritten lecture notes (with lecture number and page number).

The questions of Part II are more similar to questions in ordinary (closed book) mathematics exams: they ask you to prove a particular statement of which you have not seen a proof before. They will be marked in the usual way for mathematics exams.

Please finish Part I of the exam before starting with Part II. You should spend a substantial part of the 180 minutes in the exam on Part I. Doing all three questions of Part II in the remaining time will be challenging: rather focus on one or two of the questions. Providing a good answers to fewer questions will be better than collecting random thoughts on all three of them.

In the following, we give some information about the answers of Questions II.1, II.2, and II.3.

Question II.1. For the direction " \Leftarrow ", we show that if κ is not a strong limit, then $\mathbf{H}_{\kappa} \neq \mathbf{V}_{\kappa}$: let $\lambda<\kappa$ such that $2^{\lambda} \geq \kappa$; in particular, $\mathrm{P}(\lambda) \notin \mathbf{H}_{\kappa}$. But $\mathrm{P}(\lambda) \in \mathbf{V}_{\lambda+2} \subseteq \mathbf{V}_{\kappa}$. Thus, $\mathbf{H}_{\kappa} \neq \mathbf{V}_{\kappa}$.

For the direction " \Rightarrow ", let us assume that κ is inaccessible. Since $\mathbf{V}_{\kappa}=\bigcup_{\alpha<\kappa} \mathbf{V}_{\alpha}$, it is enough to show for all $\alpha<\kappa$ that $\mathbf{V}_{\alpha} \in \mathbf{H}_{\kappa}$. We prove this by induction on α.

Before we start with the induction, we observe that if $A \subseteq \mathbf{H}_{\kappa}$ and $|A|<\kappa$, then $A \in \mathbf{H}_{\kappa}$: if for each $a \in A,|\mathrm{TC}(a)|<\kappa$, then $\mathrm{TC}(A)=A \cup \bigcup_{a \in A} \mathrm{TC}(a)$ has size $<\kappa$ by regularity of κ and the assumptions. We refer to this as the Observation.

Now we get to the induction: clearly, $\mathbf{V}_{0} \in \mathbf{H}_{\kappa}$. If $\mathbf{V}_{\alpha} \in \mathbf{H}_{\kappa}$, then $\left|\mathbf{V}_{\alpha}\right|=: \lambda<\kappa$, and so $2^{\lambda}=\left|\mathrm{P}\left(\mathbf{V}_{\alpha}\right)\right|=\left|\mathbf{V}_{\alpha+1}\right|<\kappa$ by the fact that κ is a strong limit. Thus $\mathbf{V}_{\alpha+1}$ is a subset of \mathbf{H}_{κ} of cardinality $<\kappa$, thus by the Observation an element of \mathbf{H}_{κ}.

Finally, if μ is a limit ordinal and for all $\alpha<\mu, \mathbf{V}_{\alpha} \in \mathbf{H}_{\kappa}$. By definition, $\mathbf{V}_{\mu}=\bigcup_{\alpha<\mu} \mathbf{V}_{\alpha} \subseteq$ \mathbf{H}_{κ}. Then for all $\alpha<\mu$, the cardinal $\kappa_{\alpha}:=\left|\mathbf{V}_{\alpha}\right|$ is less than κ, and thus $\left|\mathbf{V}_{\mu}\right| \leq \sum_{\alpha<\mu} \kappa_{\alpha}<\kappa$ by regularity of κ. Thus, the Observation implies that $\mathbf{V}_{\mu} \in \mathbf{H}_{\kappa}$.

Question II.2. This is Exercise 9.3 in Jech's book (p. 121) with a very useful hint. Since some details might not be quite clear in the hint, there are some handwritten notes to be found on pp. $10 \& 11$ of this file.

Question II.3. As proved in class, the assumptions of the question imply that κ is a measurable cardinal (cf. the proof of Lemma 17.3 in Jech's book). This means that there is a non-trivial κ-complete ultrafilter U on κ. If $X \in U$, then $X \subseteq \kappa$, so $X \in \mathbf{V}_{\kappa+1}=\mathrm{P}\left(\mathbf{V}_{\kappa}\right)$; thus, $U \subseteq \mathbf{V}_{\kappa+1}$, i.e., $U \in \mathrm{P}\left(\mathbf{V}_{\kappa+1}\right)=\mathbf{V}_{\kappa+2} \subseteq M$.

As a consequence, $M \models$ "there is a non-trivial κ-complete ultrafilter on κ ", and thus $M \models$ " κ is measurable". Since $\kappa<j(\kappa)$, this means that in $M, j(\kappa)$ is not the least measurable cardinal, i.e.

$$
M \models \exists \lambda(\lambda<j(\kappa) \wedge \text { " } \lambda \text { is measurable" })
$$

But now we can apply elementarity (since $\mathbf{V} \models \Phi(\kappa) \Longleftrightarrow M \models \Phi(j(\kappa))$) and get

$$
\mathbf{V} \models \exists \lambda(\lambda<\kappa \wedge " \lambda \text { is measurable" })
$$

which is what we needed to show.
Important remark. Question II. 1 is easy to solve with a simple google search and Question II. 2 is an exercise in Jech's book with a hint. In the real exams, we shall aim for questions with no easily googlable answers or solutions in Jech's book.

Question I. 1
Let ZF* be the axiom system consisting of

ExTENSIONALITY,
PAIRING.
SEPARATION, UNION,
Power Set,
REPLACEMENT,
REGULARITY,
and ZERMELO-INFINITY.
We dare drat ZF and $Z F^{*}$ are equivilest. For this, we shall argue that

$$
\begin{equation*}
Z F H \text { Zenaclo-lufixity } \tag{1}
\end{equation*}
$$

aced $Z F^{*} \mid$ lufenity.
Proof of (l) :
The formula $\Psi(x, y): \Longleftrightarrow y=\{x\}$ is functional, so we can apply the RECURSION THEOREM (WITHOUT FIXED RANGE) from Lecture III (page 7) to obtain

$$
\begin{aligned}
& G(0)=\varnothing \\
& G(x+1)=y \Leftrightarrow \Phi(G(u), y) .
\end{aligned}
$$

The theorean proves that G is a functiree, so roue (G) is a set. But $\operatorname{ran}(G)=\mathbb{N _ { Z }}$ is Zenuelo induchive, zo the axione of
Proof of (2): As mentroned on $H W$ skeat \#2 Q7, तhe rhoon of indoctiru aned recursiou works with Zenuelo induchve sets preasely as x^{x} the strueded froong. So, in $Z F^{*}$ we obtain an analogous versisu of dle wentirieed Recursisu Thecreen withort fixed range for N_{Z} :
THEOREM Let Φ be functronal aned x an arbitrangsed. ohen there is a vuique functien G s.t.

$$
\begin{aligned}
& G\left(O_{z}\right)=x \\
& G\left(x+1_{z}\right)=y \Leftrightarrow \Phi\left(G\left(x_{z}\right), y\right)
\end{aligned}
$$

The formula $\Phi(x, y): \Longleftrightarrow$ is fouctional. $y=x \cup\{x\}$

Thus deere is a function with

$$
\begin{aligned}
& G\left(O_{z}\right)=\varnothing \\
& G(x+1 z)=G\left(u_{z}\right) \cup\left\{G\left(u_{z}\right)\right\} .
\end{aligned}
$$

The range of G is the set N which is inductive. This the axince of infinity kolds.
Replaceneaent The proof of the Recursion
The ven without fixed range and therefore its analogue for N_{Z} uses the Avion of teplacernent Civ step (4) of the proof on page 8 of ace lecture votes for lecture III).

Question I. 2

	TREE PROPERTY	NOT TREE
PROPERTY		

Three of the four situativus are possible.
(1) Every weakly compact coolezal leas
the tree property.
This is Levura 9.26 (i) in fade.
k weakly compact $\Rightarrow k$ excenple for 1
(2) Kónig's Lemma says that No has the tree property (Eleventle Lecture, p.13), bot N_{0} is not weakly compact (Eleventh Lecture, p. 14).
[Note that Jade we p. 120 defines the tree property only for uncountable cardinals.]

In class, we did not prove the possible existence of uncoontable non-weakly compact cuiderals with the tree property, lowever, we lenow what eardinals canuot be examples. Lemma 9.26 (ii) of Jede states नhat an inoscesible cardinal duat has the tiee property nust be wearly compact.
So: exacuples for (2) would not be deaccessible, but rather accessible cardenals (e.g.) soccessors $\neq N$; of.(3) and cournents on p. 7 of the Twelfth Lectore).
(3) Arouszaju's Rovsem (Thiu 9.16 Jede)
says-that awo is an Arduszaju tred say--that olwe is an A-rouszaju tred $\Longrightarrow \mathrm{N}_{1}$ does not have the thee propefty
Clesly, NI, is mot weably comepat. So A_{1} is are exaccaple for 3 .
LARGE CARDINALS
(1) The constructibe works in ZFCT thore is a weakly corerpact: Obviously, this is reeded!
(2) The constructiru works in $Z F C+$ Heore is au inaccessible. It's aot clear Vast the extra assomptioce is uesded.
(3) The coustroctien wooks ile ZTC.

All relevant definitions and theorems:
(1) THE FAMILY $\mathscr{H}_{\alpha}=\{A \leq \alpha: A \cup\{\alpha \mid$ is 1-H0rDobewsous? SATIS FILS THE ASSUMPTIONS OF ZoRN's LEMM思:

IF $C A \leq \operatorname{li}_{\alpha}$ IS A CHAN THEN $U A \in M C_{\alpha}$ - LeT $\gamma, \delta \in U C A$ AND TAKE $A, B \in \mathbb{A}$ WITH $\gamma \in \mathbb{A}$ NO dEA
THEN $A \leq B$ OR $B \leq N$, SAY $A \leq B$

$$
\text { THEN } \forall S H \text { THEN } \gamma, \delta \in B \text { SO } F(i \gamma, \delta i)=1
$$

- if $\gamma \in U A$ and $\quad \gamma \in A \in \mathcal{A}$

$$
\begin{array}{ll}
\gamma \in U G A & F \in A \in U \\
\\
\gamma H E N & F(\{\gamma, \alpha\})=1
\end{array}
$$

(2) BY ZORN'S LETMN AMS TME AXIOTOFCHCHE WE OBTAIN A FUnction $K: \omega_{1} \rightarrow U_{a} d a$ SUCH THAT $K(\alpha)$ IS A MAXIMAL ELEvEN of H_{α}
(3) By our assumption $K(\alpha) \cup\{\alpha 1$ HAS OMDER-TYPE LESS THAN $\omega+1$, HENCE IT IS A FINIS SET.
(4) DEFINE $f: \omega_{1} \rightarrow \omega_{1} \quad B Y$ $f(0)=0 \quad \forall m \quad f(\alpha)=\max (K(\alpha) \cup\{0\}) \quad \mid F \alpha>0$. By FODOR'S Pressing Down Lemma THE FUNCTION I IS CONSTANT ON
A STATIONARY SET S SAY WITH VALUE
(5) THE SETC $=[\beta+1]^{<\omega}$ is countable $A N D S=U_{x \in C}\{\alpha!K(\alpha)=x\}$ HENCE THERE IS AN $x \in C$ suCh THAT $T=\{\alpha: K(\alpha)=x \mid$
is STATIONARY:
(6) Let $\gamma<$ J in T

THEN $K(5)$ OZj $\leqslant \delta$
AND, By MaxMmaciry, K(J) viduld is not 1 -MOMOGENEOUS
BECAUSE $K(\delta)=K(\gamma)$
WE KNOW THRT

$$
\begin{aligned}
& -F(\{\eta, \gamma\})=F(\{\eta, \delta\})=1 \\
& -F(F \in K(\delta) \\
& -F(\{n, \xi\rangle)=1 \text { IF } \eta, \xi \in K(\delta)
\end{aligned}
$$

SO TME ONLY pOSSIBILITY
TO SPOIL 1-MOMOCENEITY
is By HAvino $F(\{\gamma, \delta \xi)=0$
(7) We FImD prat γ is UNCOUNTABLE AMD O-HOMOGENEOS.

