Homework Sheet #9

MasterMath: Set Theory

2020/21: 1st Semester

K. P. Hart, Benedikt Löwe, Ezra Schoen, & Ned Wontner

Deadline for Homework Set #9: Monday, 9 November 2020, 2pm.

(29) Let κ be infinite. This exercise establishes that there are at least $2^{2^{\kappa}}$ many ultrafilters on κ . Let X be the following set:

$$\left\{ \langle x, F \rangle : x \in [\kappa]^{<\aleph_0}, F \subseteq \mathcal{P}(x) \right\}$$

a. Prove that X has cardinality κ .

From now on we work on X. For every subset P of κ define

$$A_P = \{ \langle x, F \rangle \in X : P \cap x \in F \}$$

b. Prove: if $P_1, P_2, \ldots, P_k, Q_1, Q_2, \ldots, Q_l$ are distinct subsets of κ then

$$A_{P_1} \cap A_{P_2} \cap \dots \cap A_{P_k} \cap (X \setminus A_{Q_1}) \cap (X \setminus A_{Q_2}) \cap \dots \cap (X \setminus A_{Q_l}) \neq \emptyset$$

We write $A_P(1) = A_P$ and $A_P(0) = X \setminus A_P$.

- c. Prove: for every function $f : \mathcal{P}(\kappa) \to \{0,1\}$ the family $G_f = \{A_P(f(P)) : P \in \mathcal{P}(\kappa)\}$ has the finite intersection property.
- d. Deduce that there are at least $2^{2^{\kappa}}$ many ultrafilters on X (and hence on κ).
- (30) Prove: if U is a σ -complete ultrafilter on \mathbb{R} then U is principal. *Hint*: Consider, for every $q \in \mathbb{Q}$, the sets $(-\infty, q]$ and (q, ∞) .
- (31) For every countable ordinal $\alpha \ge \omega$ let $f_{\alpha} : \alpha \to \omega$ be a bijection. For α and n define

$$U(\alpha, n) = \{\beta \in \omega_1 : \beta > \alpha \text{ and } f_\beta(\alpha) = n\}$$

Prove:

- a. For every $n \in \omega$ the family $\{U(\alpha, n) : \alpha \ge \omega\}$ is pairwise disjoint.
- b. For every $\alpha \ge \omega$ there is an *n* such that $U(\alpha, n)$ is stationary in ω_1 .
- c. There is an n such that $\{\alpha \ge \omega : U(\alpha, n) \text{ is stationary}\}$ is uncountable.
- d. Every stationary subset of ω_1 can be decomposed into \aleph_1 many pairwise disjoint stationary sets.
- (32) Let $\{F_{\alpha} : \alpha < \omega_1\}$ be a family of finite subsets of ω_1 . Prove that there are a finite set R and a stationary set S such that $F_{\alpha} \cap F_{\beta} = R$ whenever $\alpha, \beta \in S$ and $\alpha \neq \beta$. *Hint*: Use Fodor's Pressing-Down Lemma to find R and a stationary set T such that $F_{\alpha} \cap \alpha = R$ for $\alpha \in T$. (A family like $\{F_{\alpha} : \alpha \in S\}$ is called a Δ -system with root R.)