Homework Sheet #8

MasterMath: Set Theory

2020/21: 1st Semester K. P. Hart, Benedikt Löwe, Ezra Shoen, & Ned Wontner

Deadline for Homework Set #8: Monday, 2 November 2020, 2pm.

- (25) Let κ be infinite. Prove that every ordinal $\alpha < \kappa^+$ can be written as the union of countably many sets, $\alpha = \bigcup_{n < \omega} X_{\alpha,n}$, such that for every *n* the order type of $X_{\alpha,n}$ is at most κ^n (ordinal power). *Hint*: This is easy if $\alpha \leq \kappa$; use induction above κ . Going from α to $\alpha + 1$ shift the sets $X_{\alpha,n}$ one up and put α in $X_{\alpha+1,0}$; if α is a limit combine the earlier $X_{\beta,k}$ into sets $X_{\alpha,n}$ (and use that cf $\alpha \leq \kappa$).
- (26) Prove: if λ is an infinite cardinal and $\langle \kappa_i : i < \lambda \rangle$ is a non-decreasing sequence of non-zero cardinals then

$$\prod_{i<\lambda}\kappa_i = \left(\sup_{i<\lambda}\kappa_i\right)^{\lambda}$$

(27) Prove the following statements

a. $\aleph_{\omega}^{\aleph_1} = \aleph_{\omega}^{\aleph_0} \cdot 2^{\aleph_1}$.

- b. If $2^{\aleph_1} = \aleph_2$ and $\aleph_{\omega}^{\aleph_0} > \aleph_{\omega_1}$ then $\aleph_{\omega_1}^{\aleph_1} = \aleph_{\omega}^{\aleph_0}$. c. If $2^{\aleph_0} \ge \aleph_{\omega_1}$ then $\beth(\aleph_{\omega}) = 2^{\aleph_0}$ and $\beth(\aleph_{\omega_1}) = 2^{\aleph_1}$.
- (28) Prove: if β is such that $2^{\aleph_{\alpha}} = \aleph_{\alpha+\beta}$ for all α then $\beta < \omega$. Complete the following steps. Assume $\beta \ge \omega$. a. Let α be minimal such that $\alpha + \beta > \beta$. Show that α is a limit.
 - b. Let $\kappa = \aleph_{\alpha+\alpha}$; show κ is singular.
 - c. Prove: $2^{\aleph_{\alpha+\xi}} = \aleph_{\alpha+\beta}$ whenever $\xi < \alpha$.
 - d. Calculate 2^{κ} and derive a contradiction.

Remark. It is consistent to have $2^{\aleph_{\alpha}} = \aleph_{\alpha+2}$ for all α .