Homework Sheet #5

MasterMath: Set Theory 2020/21: 1st Semester K. P. Hart, Benedikt Löwe, Ezra Schoen, & Ned Wontner

Deadline for Homework Set #5: Monday, 12 October 2020, 2pm. Please hand in via the elo webpage as a single pdf file.

(15) Suppose α and β are ordinals and define $F(\beta, \alpha) := \{f : \beta \to \alpha; \text{ for all but finitely} many <math>\gamma \in \beta, f(\gamma) = 0\}$ Define an order $< \text{ on } F(\beta, \alpha)$ by

 $f < g : \iff f(\mu) < g(\mu)$ where $\mu := \max\{\gamma \in \beta; f(\gamma) \neq g(\gamma)\}.$

Show that $(F(\beta, \alpha), <) \cong (\alpha^{\beta}, \in)$.

(16) Prove the Knaster-Tarski Fixed Point Theorem: Let X be a set and $F : \wp(X) \to \wp(X)$ a \subseteq -monotone function, i.e., if $A \subseteq B$, then $F(A) \subseteq F(B)$. Then F has a fixed point, i.e., a set $A \subseteq X$ such that A = F(A).

Use the Knaster-Tarski Fixed Point Theorem to prove the Banach Decomposition Theorem: Let X and Y be sets and $f: X \to Y$ and $g: Y \to X$ arbitrary functions. Then there are disjoint decompositions $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$ such that $f[X_1] = Y_1$ and $g[Y_2] = X_2$.

[*Hint.* Apply Knaster-Tarski to $F(S) := X \setminus g[Y \setminus f[S]]$.]

Finally, derive the Cantor-Schröder-Bernstein Theorem from the Banach Decomposition Theorem.

(17) Consider the usual topology on the real numbers \mathbb{R} : a subset $P \subseteq \mathbb{R}$ is called *open* if for every $x \in P$ there is an $\varepsilon > 0$ such that the open ball around x with radius ε is a subset of P (i.e., $\{y \in \mathbb{R} ; |y - x| < \varepsilon\} \subseteq P$). Let τ be the set of open subsets of \mathbb{R} . Prove that there is a bijection between \mathbb{R} and τ .

[*Hint.* Use the fact that \mathbb{Q} is countable and lies dense in \mathbb{R} .]