Homework Sheet #14

MasterMath: Set Theory

2020/21: 1st Semester

K. P. Hart, Benedikt Löwe, Ezra Schoen, & Ned Wontner

Deadline for Homework Set #14: Monday, 14 December 2020, 2pm.

(46) Let $j: V \to M$ be a non-trivial elementary embedding and let κ be minimal with $j(\kappa) > \kappa$. We showed that κ is measurable because

$$D = \{X \subseteq \kappa : \kappa \in j(X)\}$$

is a κ -complete ultrafilter. This ultrafilter is in fact a normal measure (Jech, top of page 289).

- a. The argument in the book takes $X \in D$ and a regressive $f: X \to \kappa$. The claim is that f is constant on a member of D, with value $j(f)(\kappa)$. Give a detailed proof of this.
- b. Give an alternative proof by showing, directly from its definition, that D is closed under diagonal intersections.
- (47) [Jech, Exercise 17.17] If κ is a successor cardinal, say $\kappa = \lambda^+$, then $\mathcal{L}_{\kappa,\omega}$ does not satisfy the Weak Compactness Theorem.

As in the book use two relations \prec and R (in fact the book seems to assume implicitly that = is part of any language, so formally we have three relations) and constants $\{c_{\alpha} : \alpha \leq \kappa\}$. The intended meaning of \prec is a linear order and R is to code many functions. The set Σ consists of

- (1) the axioms for a linear order
- (2) the formulas $c_{\alpha} \prec c_{\beta}$ for $\alpha < \beta \leq \kappa$
- (3) a sentence that formulates that a fixed x the relation R(x, y, z) defines z as a function of y; we write $f_x(y) = z$
- (4) for all $\alpha \leq \kappa$ the sentence φ_{α} given by $(\forall z)(\exists y)(z \prec c_{\alpha} \rightarrow R(c_{\alpha}, y, z))$
- (5) $(\forall x)(\forall y)(\forall z)(R(x,y,z) \to \bigvee_{\alpha < \lambda} (y = c_{\alpha}))$
- a. Write down a sentence that accomplishes (3) above
- b. Show that (4) and (5) do what the book claims: $\{z : z \prec c_{\alpha}\} \subseteq \operatorname{ran} f_{c_{\alpha}}$ and dom $f_x \subseteq \{c_{\alpha} : \alpha < \lambda\}$.
- c. Prove that every $S \in [\Sigma]^{<\kappa}$ has a model. *Hint*: without loss of generality the set of constants that occur in the sentences in S is of the form $\{c_{\kappa}\} \cup \{c_{\alpha} : \alpha < \delta\}$ for some $\delta < \kappa$. Build a model with $\{\kappa\} \cup \delta$ as its universe.
- d. Prove that Σ does not have a model. *Hint*: $R(c_{\kappa}, y, z)$ would code a surjection from λ onto κ .
- (48) [Jech, Exercise 17.18] If κ is a singular cardinal then $\mathcal{L}_{\kappa,\omega}$ does not satisfy the Weak Compactness Theorem.

Let A be cofinal in κ and of cardinality less than κ . We use one relation \prec and constants $\{c_{\alpha} : \alpha \leq \kappa\}$. As in the previous exercise \prec is destined to be a linear order. The set Σ consists of

- (1) the axioms for a linear order
- (2) a sentence that states that $\{c_{\alpha} : \alpha \in A\}$ is cofinal in this linear order
- (3) for every $\alpha < \kappa$ a sentence φ_{α} that expresses: if $c_{\beta} \prec c_{\kappa}$ for all $\beta < \alpha$ then also $c_{\alpha} \prec c_{\kappa}$
- a. Write down an $\mathcal{L}_{\kappa,\omega}$ -sentence that accomplishes (2).
- b. Write down an $\mathcal{L}_{\kappa,\omega}$ -sentence φ_{α} that accomplishes (3).
- c. Prove that every $S \in [\Sigma]^{<\kappa}$ has a model. *Hint*: the set B of $\alpha \leq \kappa$ for which c_{α} occurs in a sentence in S has cardinality less than κ . Let $\delta = \min \kappa \setminus B$; build a model for S on the set $\kappa + 1$ by inserting κ just before δ
- d. Prove that Σ does not have a model. *Hint*: prove that c_{κ} would become the maximum in the linear order.
- (49) [Converse to Jech, Exercise 17.21] Let κ be an uncountable cardinal such that every linearly ordered set of cardinality κ has a well-ordered subset of cardinality κ or an inversely well-ordered subset of cardinality κ . We prove that κ is weakly compact.
 - a. Prove that κ is not singular. *Hint*: If $\lambda = \operatorname{cf} \kappa < \kappa$ let $\langle \alpha_{\eta} : \eta < \lambda \rangle$ be increasing, continuous and cofinal in κ , with $\alpha_0 = 0$. Define \prec on κ by

$$\gamma \prec \delta \text{ iff } \begin{cases} \delta < \gamma & \text{ if } \gamma, \delta \in [\alpha_{\eta}, \alpha_{\eta+1}) \text{ for some } \eta \\ \gamma < \delta & \text{ otherwise} \end{cases}$$

- b. Prove that κ is a strong limit (and hence inaccessible). *Hint*: If $\lambda < \kappa \leq 2^{\lambda}$ then apply Exercise (36) from Homework set #10.
- c. Prove that κ has the tree property. *Hint*: Assume $(T, <_T)$ be a tree of cardinality κ such that all levels have cardinality less that κ . As in Exercise (40) in Homework set #12 define a linear order \prec on T by first taking a well order \sqsubset of T in type κ and then defining $s \prec t$ if $s <_t t$ or $s_{\alpha} \sqsubset t_{\alpha}$, where T_{α} is the lowest level where s and t have distinct predecessors s_{α} and t_{α} respectively.

Let H a subset of T that is well-ordered by \prec (or \succ) in order type κ . Prove that in every level of the tree there is exactly one s such that $\{t \in H : s <_T t\}$ has cardinality κ . These points determine a branch.