Homework Sheet \#14

K. P. Hart, Benedikt Löwe, Ezra Schoen, \& Ned Wontner

Deadline for Homework Set \#14: Monday, 14 December 2020, 2pm.
(46) Let $j: V \rightarrow M$ be a non-trivial elementary embedding and let κ be minimal with $j(\kappa)>\kappa$. We showed that κ is measurable because

$$
D=\{X \subseteq \kappa: \kappa \in j(X)\}
$$

is a κ-complete ultrafilter. This ultrafilter is in fact a normal measure (Jech, top of page 289).
a. The argument in the book takes $X \in D$ and a regressive $f: X \rightarrow \kappa$. The claim is that f is constant on a member of D, with value $j(f)(\kappa)$. Give a detailed proof of this.
b. Give an alternative proof by showing, directly from its definition, that D is closed under diagonal intersections.
(47) [Jech, Exercise 17.17] If κ is a successor cardinal, say $\kappa=\lambda^{+}$, then $\mathcal{L}_{\kappa, \omega}$ does not satisfy the Weak Compactness Theorem.
As in the book use two relations \prec and R (in fact the book seems to assume implicitly that $=$ is part of any language, so formally we have three relations) and constants $\left\{c_{\alpha}: \alpha \leqslant \kappa\right\}$. The intended meaning of \prec is a linear order and R is to code many functions. The set Σ consists of
(1) the axioms for a linear order
(2) the formulas $c_{\alpha} \prec c_{\beta}$ for $\alpha<\beta \leqslant \kappa$
(3) a sentence that formulates that a fixed x the relation $R(x, y, z)$ defines z as a function of y; we write $f_{x}(y)=z$
(4) for all $\alpha \leqslant \kappa$ the sentence φ_{α} given by $(\forall z)(\exists y)\left(z \prec c_{\alpha} \rightarrow R\left(c_{\alpha}, y, z\right)\right)$
(5) $(\forall x)(\forall y)(\forall z)\left(R(x, y, z) \rightarrow \bigvee_{\alpha<\lambda}\left(y=c_{\alpha}\right)\right)$
a. Write down a sentence that accomplishes (3) above
b. Show that (4) and (5) do what the book claims: $\left\{z: z \prec c_{\alpha}\right\} \subseteq \operatorname{ran} f_{c_{\alpha}}$ and dom $f_{x} \subseteq\left\{c_{\alpha}: \alpha<\lambda\right\}$.
c. Prove that every $S \in[\Sigma]^{<\kappa}$ has a model. Hint: without loss of generality the set of constants that occur in the sentences in S is of the form $\left\{c_{\kappa}\right\} \cup\left\{c_{\alpha}: \alpha<\delta\right\}$ for some $\delta<\kappa$. Build a model with $\{\kappa\} \cup \delta$ as its universe.
d. Prove that Σ does not have a model. Hint: $R\left(c_{\kappa}, y, z\right)$ would code a surjection from λ onto κ.
(48) [Jech, Exercise 17.18] If κ is a singular cardinal then $\mathcal{L}_{\kappa, \omega}$ does not satisfy the Weak Compactness Theorem.
Let A be cofinal in κ and of cardinality less than κ. We use one relation \prec and constants $\left\{c_{\alpha}: \alpha \leqslant \kappa\right\}$. As in the previous exercise \prec is destined to be a linear order. The set Σ consists of
(1) the axioms for a linear order
(2) a sentence that states that $\left\{c_{\alpha}: \alpha \in A\right\}$ is cofinal in this linear order
(3) for every $\alpha<\kappa$ a sentence φ_{α} that expresses: if $c_{\beta} \prec c_{\kappa}$ for all $\beta<\alpha$ then also $c_{\alpha} \prec c_{\kappa}$
a. Write down an $\mathcal{L}_{\kappa, \omega}$-sentence that accomplishes (2).
b. Write down an $\mathcal{L}_{\kappa, \omega}$-sentence φ_{α} that accomplishes (3).
c. Prove that every $S \in[\Sigma]^{<\kappa}$ has a model. Hint: the set B of $\alpha \leqslant \kappa$ for which c_{α} occurs in a sentence in S has cardinality less than κ. Let $\delta=\min \kappa \backslash B$; build a model for S on the set $\kappa+1$ by inserting κ just before δ
d. Prove that Σ does not have a model. Hint: prove that c_{κ} would become the maximum in the linear order.
(49) [Converse to Jech, Exercise 17.21] Let κ be an uncountable cardinal such that every linearly ordered set of cardinality κ has a well-ordered subset of cardinality κ or an inversely well-ordered subset of cardinality κ. We prove that κ is weakly compact.
a. Prove that κ is not singular. Hint: If $\lambda=\operatorname{cf} \kappa<\kappa$ let $\left\langle\alpha_{\eta}: \eta<\lambda\right\rangle$ be increasing, continuous and cofinal in κ, with $\alpha_{0}=0$. Define \prec on κ by

$$
\gamma \prec \delta \text { iff } \begin{cases}\delta<\gamma & \text { if } \gamma, \delta \in\left[\alpha_{\eta}, \alpha_{\eta+1}\right) \text { for some } \eta \\ \gamma<\delta & \text { otherwise }\end{cases}
$$

b. Prove that κ is a strong limit (and hence inaccessible). Hint: If $\lambda<\kappa \leqslant 2^{\lambda}$ then apply Exercise (36) from Homework set \#10.
c. Prove that κ has the tree property. Hint: Assume $\left(T,<_{T}\right)$ be a tree of cardinality κ such that all levels have cardinality less that κ. As in Exercise (40) in Homework set \#12 define a linear order \prec on T by first taking a well order \sqsubset of T in type κ and then defining $s \prec t$ if $s<_{t} t$ or $s_{\alpha} \sqsubset t_{\alpha}$, where T_{α} is the lowest level where s and t have distinct predecessors s_{α} and t_{α} respectively.
Let H a subset of T that is well-ordered by \prec (or \succ) in order type κ. Prove that in every level of the tree there is exactly one s such that $\left\{t \in H: s<_{T} t\right\}$ has cardinality κ. These points determine a branch.

