Homework Sheet #13

MasterMath: Set Theory

2020/21: 1st Semester

K. P. Hart, Benedikt Löwe, Ezra Schoen, & Ned Wontner

Deadline for Homework Set #13: Monday, 7 December 2020, 2pm.

- (43) If $\langle A_{\alpha} : \alpha < \lambda \rangle$ is a sequence of subsets of a set S then a sequence $\langle B_{\alpha} : \alpha < \lambda \rangle$ of subsets of S is a *flip* of the given sequence if for all α we have $B_{\alpha} \in \{A_{\alpha}, S \setminus A_{\alpha}\}$.
 - a. Prove: κ is strongly inaccessible iff for every $\lambda < \kappa$ every sequence $\langle A_{\alpha} : \alpha < \lambda \rangle$ of subsets of κ has a flip $\langle B_{\alpha} : \alpha < \lambda \rangle$ such that $\bigcap_{\alpha < \lambda} B_{\alpha}$ has cardinality κ .
 - b. Prove: κ is weakly compact iff every sequence $\langle A_{\alpha} : \alpha < \kappa \rangle$ of subsets of κ has a flip $\langle B_{\alpha} : \alpha < \kappa \rangle$ such that for all $\lambda < \kappa$ the intersection $\bigcap_{\alpha < \lambda} B_{\alpha}$ has cardinality κ .
 - c. Prove: κ is measurable compact iff for ever cardinal λ every sequence $\langle A_{\alpha} : \alpha < \lambda \rangle$ of subsets of κ has a flip $\langle B_{\alpha} : \alpha < \lambda \rangle$ such that for every subset A of λ of cardinality less than κ the intersection $\bigcap_{\alpha \in A} B_{\alpha}$ has cardinality κ .

In the following two exercises κ is a measurable cardinal and U is a κ -complete ultrafilter on κ . We let $\text{Ult}_U(V)$ be the corresponding ultrapower, which we identify with its transitive collapse M, and $j = j_U : V \to M$ is the elementary embedding.

- (44) This exercise shows directly that $(\kappa^+)^M = \kappa^+$. Just to remind ourselves: $(\kappa^+)^M$ is the smallest ordinal such that there is no surjection $f : \kappa \to (\kappa^+)^M$ that is in M; whereas κ^+ is the smallest ordinal such that there is no surjection $f : \kappa \to \kappa^+$ at all in V.
 - a. Show that $(\kappa^+)^M \leq \kappa^+$.
 - b. Prove: if $\alpha < \kappa^+$ then $\alpha < (\kappa^+)^M$. Hint: let $f : \kappa \to \alpha$ be a surjection; give an explicit construction of a map $F : \kappa \to V$ such that $f = [F]_U$.
- (45) We look at the images of V_{κ} and $V_{\kappa+1}$.
 - a. Prove that j(x) = x for all $x \in V_{\kappa}$.
 - b. Prove that $(V_{\kappa})^M = V_{\kappa} = j[V_{\kappa}].$
 - c. Prove that $j(V_{\kappa}) \neq j[V_{\kappa}]$.
 - d. Prove that $(V_{\kappa+1})^M = V_{\kappa+1}$.
 - e. Prove that $V_{\kappa+1} \neq j[V_{\kappa+1}]$, that $V_{\kappa+1} \neq j(V_{\kappa+1})$, and that $j(V_{\kappa+1}) \neq j[V_{\kappa+1}]$.