Homework Sheet #12

MasterMath: Set Theory

2020/21: 1st Semester

K. P. Hart, Benedikt Löwe, Ezra Schoen, & Ned Wontner

Deadline for Homework Set #12: Monday, 30 November 2020, 2pm.

(40) Let $Q = \omega_1^{<\omega}$ be the tree of finite sequences of countable ordinals. Define an order \prec on Q by

 $s \prec t$ if $\begin{cases} s \subset t & \text{that is: } s \text{ is a proper initial segment of } t, \text{ or } s(i) < t(i) & \text{where } i \text{ is minimal such that } s(i) \neq t(i) \end{cases}$

- a. Prove that \prec is a linear order on Q.
- b. Prove: if $s \in Q$ then $I_s = \{t : s \subset t\}$ is an interval in (Q, \prec) that is order-isomorphic to Q.
- c. Prove: for every $\alpha < \omega_2$ there is an isomorphic copy of α in (Q, \prec) (and hence in every I_s). *Hint*: induction on α , using the inductive assumption on the I_s .

Note: this idea can be used on any tree to turn it into a linearly ordered set. Many interesting examples can be obtained in this way.

- (41) [Exercise 28.5 in Jech] Assume the Continuum Hypothesis and construct an \aleph_2 -Aronszajn tree. *Hint*: Take the linear order (Q, \prec) from the previous exercise and mimic the construction of an \aleph_1 -Aronszajn tree, but now inside the subtree I of $Q^{<\omega_2}$ that consists of all increasing sequences.
- (42) [Exercise 8.8 in Jech] Let κ be regular uncountable and let \mathcal{F} be a κ -complete filter on κ that contains the family $\{\kappa \setminus \alpha : \alpha \in \kappa\}$. Let \mathcal{F}^+ denote the family of sets that are *positive* with respect to \mathcal{F} , where A is positive if $A \cap F \neq \emptyset$ for all $F \in \mathcal{F}$. (For example if \mathcal{C}_{κ} is the cub filter then \mathcal{C}_{κ}^+ is the family of stationary sets.)

Prove that \mathcal{F} is a normal filter if and only if it satisfies Fodor's Pressing-Down Lemma: if $A \in \mathcal{F}^+$ and is $f : A \to \kappa$ is regressive then f is constant on a set in \mathcal{F}^+ .