Homework Sheet #11

MasterMath: Set Theory

2020/21: 1st Semester K. P. Hart, Benedikt Löwe, Ezra Schoen, & Ned Wontner

Deadline for Homework Set #11: Monday, 23 November 2020, 2pm.

- (37) Let κ be an infinite cardinal and let \prec be some well-order of κ . Prove that there is a subset H of κ of cardinality κ such that \prec and \in agree on H, that is: for α and β in H we have $\alpha \in \beta$ iff $\alpha \prec \beta$.
- (38) This exercise provides an alternative proof of the instance $\aleph_0 \to (\aleph_0)_2^2$ of Ramsey's Theorem, based on Kőnig's Infinity Lemma.

Let $F: [\omega]^2 \to 2$ be a colouring and let S be the binary tree $2^{<\omega}$. Define subsets A_s of ω , for $s \in S$, by recursion: $A_{\emptyset} = \omega$, and given A_s define $A_{s,0}$ and $A_{s,1}$ as follows: if $A_s \neq \emptyset$ set $n_s = \min A_s$ and let $A_{s,i} = \{m \in A_s : m > n_s \text{ and } F(\{n_s, m\}) = i\}$; if $A_s = \emptyset$ let $n_s = 0$ and $A_{s,0} = A_{s,1} = \emptyset$. Let $T = \{s \in S : A_s \neq \emptyset\}$.

- a. Show that T is downward closed: if $t \in T$ and s < t then $s \in T$.
- b. Prove that T is infinite, with finite levels.
- c. Let B be an infinite branch of T. Prove that $P = \{n_s : s \in B\}$ has the property that $F(\{k, l\}) = F(\{k, m\})$ whenever k < l < m in P.
- d. Show that P has an infinite subset H that is homogeneous for F.

Note: one can prove all instances of Ramsey's theorem from Kőnig's Lemma, using somewhat more complicated trees.

(39) This exercise provides an alternative construction of an Aronszajn tree.

For subsets A and B of N we say that A is almost contained in B, and we write $A \subseteq^* B$, when $A \setminus B$ is finite.

If s and t are maps from some countable ordinal α to \mathbb{N} then we say that s and t are almost equal, and we write $s =^{*} t$, when $\{\beta \in \alpha : s(\beta) \neq t(\beta)\}$ is finite.

- a. Let $\langle A_n \rangle_n$ be a sequence of infinite subsets of \mathbb{N} such that $A_{n+1} \subseteq^* A_n$ for all n. Prove that there is an infinite set A such that $A \subseteq^* A_n$ for all n.
- b. Let $\langle \alpha_n \rangle_n$ be an increasing sequence of countable ordinals and for each n let $s_n : \alpha_n \to \mathbb{N}$ be injective. Assume that $\mathbb{N} \setminus \operatorname{ran} s_n$ is infinite for all n and that $s_m =^* s_n \upharpoonright \alpha_m$ whenever m < n. Let $\alpha = \sup_n \alpha_n$. Construct an injective $s : \alpha \to \mathbb{N}$ such that $s_n =^* s \upharpoonright \alpha_n$ for all n and $\mathbb{N} \setminus \operatorname{ran} s$ is infinite.
- c. Construct a sequence $\langle s_{\alpha} : \alpha < \omega_1 \rangle$ of functions where $s_{\alpha} : \alpha \to \mathbb{N}$ is injective for all α and $s_{\beta} =^* s_{\alpha} \upharpoonright \beta$ whenever $\beta < \alpha$.
- d. For $\alpha < \omega_1$ let $T_\alpha = \{t \in \mathbb{N}^\alpha : t =^* s_\alpha\}$. Prove that $\bigcup_{\alpha < \omega_1} T_\alpha$, ordered by \subset , is an Aronszajn tree.