Homework Sheet #10

MasterMath: Set Theory

2020/21: 1st Semester K. P. Hart, Benedikt Löwe, Ezra Schoen, & Ned Wontner

Deadline for Homework Set #10: Monday, 16 November 2020, 2pm.

- (33) Some applications of Ramsey's theorem.
 - a. Let $\langle L, < \rangle$ be an infinite linearly ordered set. Prove that L has an infinite subset X that is well-ordered by < or an infinite subset Y that is well-ordered by >.
 - b. Prove that every bounded sequence of real numbers has a convergent subsequence (the Bolzano-Weierstraß theorem). *Hint*: Find a monotone subsequence.
 - c. Let $\langle P, < \rangle$ be an infinite partially ordered set. Prove that P has an infinite subset C that is linearly ordered by < (a chain) or an infinite subset U that is unordered by <, which means that if x and y in U are distinct then neither x < y nor y < x.
- (34) Check the details of Erdős' example that shows $2^{\aleph_0} \neq (3)^2_{\aleph_0}$: take the open unit interval (0,1) as the set of cardinality 2^{\aleph_0} and define $F(\{x, y\}) = k$ if $2^{-k+1} > |x y| \ge 2^{-k}$. Show there is no three-element homogeneous set.
- (35) Prove that $2^{\kappa} \not\to (3)^{2}_{\kappa}$ for every cardinal κ . *Hint*: Take the set 2^{κ} of functions from κ to 2 and define $F: [2^{\kappa}]^{2} \to \kappa$ by $F(\{x, y\}) = \min\{\alpha : x(\alpha) \neq y(\alpha)\}.$
- (36) Prove that $2^{\kappa} \neq (\kappa^+)_2^2$ for every cardinal κ . *Hint*: Take the set 2^{κ} of functions from κ to 2. Let < be the lexicographic order of 2^{κ} , defined by x < y iff $x(\delta) < y(\delta)$ where $\delta = \min\{\alpha : x(\alpha) \neq y(\alpha)\}$ and let \prec be some well-order of 2^{κ} . $F : [2^{\kappa}]^2 \to 2$ by $F(\{x, y\}) = 1$ if \prec and < agree on $\{x, y\}$ and let $F(\{x, y\}) = 0$ in the opposite case. The crux is to prove that any set well-ordered by < has cardinality at most κ .