Group Interaction \#9

MasterMath: Set Theory
2020/21: 1st Semester

K. P. Hart, Benedikt Löwe, Ezra Schoen, \& Ned Wontner
(1) This exercise explores closed and unbounded sets some more and their relation to the set of submodels of a given model and normal filters.
Let κ be a regular cardinal. Remember that a function $f: \kappa \rightarrow \kappa$ said to be normal if it is order-preserving (if $\alpha<\beta$ then $f(\alpha)<f(\beta)$) and continuous (if α is a limit ordinal then $f(\alpha)=\sup _{\beta<\alpha} f(\beta)$).
There is a close connection between closed unbounded sets and normal functions.
a. Prove: if f is normal then $f[\kappa]$ is closed and unbounded.
b. Prove: if C is closed and unbounded then there is a normal function f such that $C=f[\kappa]$.

The following two parts show the relation between closed unbounded sets and families of submodels of a given model.
c. Let $f: \kappa^{n} \rightarrow \kappa$ be an arbitrary function for some $n \in \mathbb{N}$. Show that $C_{f}=\left\{\alpha: f\left[\alpha^{n}\right] \subseteq \alpha\right\}$ is closed and unbounded.
d. Let $*$ be a binary operation such that $(\kappa, *)$ is a group. Prove that the set of α such that $(\alpha, *)$ is a subgroup of $(\kappa, *)$ is closed and unbounded.
(2) In class we proved the ultrafilter theorem using Zorn's Lemma.

Here is sketch of a construction based on the well-ordering theorem. (Many constructions of ultrafilters in topology and set theory are by transfinite recursion.)
Let X be a set.
a. Prove that a filter F on X is an ultrafilter if and only if for every function $f: X \rightarrow\{0,1\}$ there is a member of F on which f is constant.
b. Prove: if F is a filter and $f: X \rightarrow\{0,1\}$ is a function then there is a filter G that is finer than F and that has a member on which f is constant.
Now let $\left\langle f_{\alpha}: \alpha<2^{\kappa}\right\rangle$, where $\kappa=|X|$, enumerate the set of all functions from X to $\{0,1\}$.
c. Let F be an arbitrary filter on X; show how to build an increasing chain $\left\langle F_{\alpha}: \alpha<2^{\kappa}\right\rangle$ of filters such that $F_{0}=F$ and for every α there an element of $F_{\alpha+1}$ on which f_{α} is constant. Deduce that $U=\bigcup_{\alpha<2^{\kappa}} F_{\alpha}$ is an ultrafilter.
d. The construction in the previous part requires a choice at every successor step. How would you use the well-ordering theorem to make that choice explicit?

