Group Interaction #8

MasterMath: Set Theory

2020/21: 1st Semester K. P. Hart, Benedikt Löwe, Ezra Shoen, & Ned Wontner

In class we saw the statement

An infinite cardinal κ is singular if and only if there exist a cardinal $\lambda < \kappa$ and a family $\{S_{\alpha} : \alpha < \lambda\}$ of subsets of κ such that $|S_{\alpha}| < \kappa$ for all α and $\kappa = \bigcup_{\alpha < \lambda} S_{\alpha}$.

The smallest such cardinal λ is equal to cf κ .

- (1) Prove the equivalence. Check whether your proof uses the Axiom of Choice. In fact, neither of the implications needs AC, so try to come up with a proof in ZF.
- (2) Consider variations of the statement. Can the S_{α} be taken disjoint? Can the cardinalities of the S_{α} be all singular? All regular?

The Singular Cardinals Hypothesis (SCH) was introduced in class:

For every singular cardinal κ : if $2^{\operatorname{cf} \kappa} < \kappa$ then $\kappa^{\operatorname{cf} \kappa} = \kappa^+$.

- (3) Prove that the Generalized Continuum Hypothesis implies SCH.
- (4) Theorem 5.22 in Jech describes the behaviour of the continuum function and cardinal exponentiation under the assumption of SCH.

Theorem 5.22. Assume that SCH holds.

- (i) If κ is a singular cardinal then
 - (a) $2^{\kappa} = 2^{<\kappa}$ if the continuum function is eventually constant below κ , (b) $2^{\kappa} = (2^{<\kappa})^+$ otherwise.
- (ii) If κ and λ are infinite cardinals, then:
 - (a) If $\kappa \leq 2^{\lambda}$ then $\kappa^{\lambda} = 2^{\lambda}$.
 - (b) If $2^{\lambda} < \kappa$ and $\lambda < cf \kappa$ then $\kappa^{\lambda} = \kappa$. (c) If $2^{\lambda} < \kappa$ and $cf \kappa \leq \lambda$ then $\kappa^{\lambda} = \kappa^+$.

It is prefaced by the statement that cardinal exponentiation is determined by the continuum function on regular cardinals. Describe the/an algorithm that allows you to calculate κ^{λ} for arbitrary κ and λ under the assumption that you have an oracle that tells you the value of 2^{μ} for regular μ , that oracle could be in the form of a (class) function F from the class of ordinals to itself such that $2^{\aleph_{\alpha}} = \aleph_{F(\alpha)}$ whenever \aleph_{α} is regular.

- (5) Use your algorithm to determine the following powers, under the assumption that SCH holds and that $2^{\aleph_{\alpha+1}} = \aleph_{\omega+\alpha^2+1}$ for all α .
 - a. $\aleph_{\omega}^{\aleph_{\omega}}$
 - b. $\aleph_{\omega+2}^{\aleph_2}$

 - c. $\aleph_{\omega_1 \cdot 2}^{\aleph_1}$ d. $\aleph_5^{\aleph_{\omega_1}}$