Group Interaction #7

MasterMath: Set Theory 2020/21: 1st Semester K. P. Hart, Benedikt Löwe, Ezra Schoen, & Ned Wontner

In the seventh group interaction, we explore levels of the von Neumann hierarchy as models of set theory.

- (1) In class, we stated that if λ is a limit ordinal, then \mathbf{V}_{λ} is a model of FST. Go through all of the axioms carefully and understand why this claim is true.
- (2) In class, we sketched the argument that neither $\mathbf{V}_{\omega+\omega}$ nor \mathbf{V}_{ω_1} satisfy the axiom scheme of Replacement. Give a careful argument for this claim by specifying precisely the functional formula Φ for which the scheme is violated in the corresponding models.
- (3) Generalise the argument from (2) to show the following claims:
 - (a) If κ is a cardinal such that there is a $\lambda < \kappa$ and a cofinal function $f : \lambda \to \kappa$ that is definable in \mathbf{V}_{κ} (i.e., there is a formula Φ such that $f(\alpha) = \beta$ if and only if $\mathbf{V}_{\kappa} \models \Phi(\alpha, \beta)$), then \mathbf{V}_{κ} cannot be a model of the axiom scheme of Replacement.
 - (b) If κ is a cardinal such that there is a $\lambda < \kappa$ and a surjection $g : P(\lambda) \to \kappa$ that is definable in \mathbf{V}_{κ} (i.e., there is a formula Ψ such that $g(X) = \alpha$ if and only if $\mathbf{V}_{\kappa} \models \Psi(X, \alpha)$), then \mathbf{V}_{κ} cannot be a model of the axiom scheme of Replacement.

Explain why the assumption of *definability* was needed in your argument.

- (4) Let $X \subseteq \mathbf{V}_{\omega}$. We say that X is closed under pairing if for any $x, y \in X$, also $\{x, y\} \in X$. We say that X is closed under union if for any $x \in X$, also $\bigcup x \in X$. Characterise the subsets of \mathbf{V}_{ω} that are closed under both pairing and union.
- (5) Remember the graph model constructions that we did in the first *Group Interaction*. We had augmentation operations that took an extensional graph $\mathbf{G} = (V, E)$ and extended it to a bigger extensional graph $\mathbf{G}' = (V', E')$ such that no new incoming edges for old vertices were constructed (i.e., if $v \in V$ and $(w, v) \in E'$, then $(w, v) \in E$; in other words, \mathbf{G}' is an end extension of \mathbf{G}).

(Now is a good moment to go back to the task sheet of *Group Interaction* #1 and re-familiarise yourself with the notions of *Pairing Closure* and *Power Set Closure*, as well as the notions of an *extensional graph* and a *locally finite graph*.)

Give conditions on the *augmentation operation* $\mathbf{G} \mapsto \mathbf{G}'$ that imply that if \mathbf{G} is isomorphic to a subset of \mathbf{V}_{ω} , then \mathbf{G}' is isomorphic to a subset of \mathbf{V}_{ω} .

(6) Using (4) and (5), formulate and prove a result that shows that there can be no graph model construction starting from the single irreflexive point such that the resulting model is a model of the pairing and the union axiom, but not of the power set axiom.

[Note that "formulating the result" means that you need to specify precisely what you mean by graph model construction. You need to do this specification in such a way that you can prove the claim.]