MasterMath: Set Theory 2020/21: 1st Semester K. P. Hart, Benedikt Löwe, Ezra Schoen, & Ned Wontner

In the fifth group interaction, we shall look at Hessenberg's Theorem. The following is an excerpt from Jech's book (pp. 30–31):

The Canonical Well-Ordering of $\alpha \times \alpha$

We define a well-ordering of the class $Ord \times Ord$ of ordinal pairs. Under this well-ordering, each $\alpha \times \alpha$ is an initial segment of Ord^2 ; the induced well-ordering of α^2 is called the *canonical well-ordering* of α^2 . Moreover, the well-ordered class Ord^2 is isomorphic to the class Ord, and we have a oneto-one function Γ of Ord^2 onto Ord. For many α 's the order-type of $\alpha \times \alpha$ is α ; in particular for those α that are alephs.

We define:

$$\begin{array}{ll} (3.12) & (\alpha,\beta) < (\gamma,\delta) \leftrightarrow \text{either } \max\{\alpha,\beta\} < \max\{\gamma,\delta\},\\ & \text{ or } \max\{\alpha,\beta\} = \max\{\gamma,\delta\} \text{ and } \alpha < \gamma,\\ & \text{ or } \max\{\alpha,\beta\} = \max\{\gamma,\delta\}, \, \alpha = \gamma \text{ and } \beta < \delta. \end{array}$$

The relation < defined in (3.12) is a linear ordering of the class $Ord \times Ord$. Moreover, if $X \subset Ord \times Ord$ is nonempty, then X has a least element. Also, for each α , $\alpha \times \alpha$ is the initial segment given by $(0, \alpha)$. If we let

 $\Gamma(\alpha,\beta)$ = the order-type of the set $\{(\xi,\eta): (\xi,\eta) < (\alpha,\beta)\},\$

then Γ is a one-to-one mapping of Ord^2 onto Ord, and

(3.13) $(\alpha, \beta) < (\gamma, \delta)$ if and only if $\Gamma(\alpha, \beta) < \Gamma(\gamma, \delta)$.

- (1) Draw a picture of what this function is doing. Calculate the values of $\Gamma(2,2)$, $\Gamma(3,3)$, $\Gamma(4,4)$, $\Gamma(0,\omega)$, $\Gamma(\omega,0)$, $\Gamma(\omega,\omega)$, $\Gamma(\omega,\omega+1)$, and $\Gamma(\omega+3,\omega+3)$.
- (2) Check Jech's claims in this text excerpt:
 - (a) < is a linear order,
 - (b) if X is a nonempty class of pairs of ordinals, then it has a <-least element,
 - (c) for each α , $\alpha \times \alpha$ is the initial segment of $\langle q q q q q \rangle$.
- (3) Use the function Γ to prove Hessenberg's Theorem: for any infinite ordinal α, there is a bijection between α and α × α.
 [*Hint.* It's enough to prove this for cardinals ℵ_γ (why?). Prove it for these by induction on γ: assume that it
- is the case for all ordinals $\xi < \gamma$ and show it for γ .] (4) Use (3) to show that for infinite cardinal numbers $\kappa \leq \lambda$, the following three sets are in

bijection with each other: $\lambda, \kappa \times \lambda$, and the disjoint union of κ and λ (i.e., $\kappa \times \{0\} \cup \lambda \times \{1\}$).