Group Interaction #3

MasterMath: Set Theory 2020/21: 1st Semester K. P. Hart, Benedikt Löwe, Ezra Schoen, & Ned Wontner

In the third group interaction, we shall explore the set-theoretic construction of the integers, the rational numbers, and the real numbers.

A structure $\mathbf{A} = (A, +, 0)$ is called *cancellative abelian monoid* if for all $a, b, c \in A$, we have:

$$a + (b + c) = (a + b) + c,$$

$$a + b = b + a,$$

$$a + 0 = a,$$

$$0 + a = a \text{ and}$$

if $a + b = a + c$, then $b = c$.

The last condition is called the *cancellation law*. If **A** is a cancellative abelian monoid, we define a relation \approx on $A \times A$ by $(a, b) \approx (a', b')$ if and only if a + b' = b + a'.

- (1) Show that \approx is an equivalence relation. Highlight the use of the cancellation law in your argument and consider what happens if the monoid **A** is not cancellative.
- (2) Writing [a, a']≈ for the ≈-equivalence class of the pair (a, a'), define an operation + on the set of all ≈-equivalence classes A × A/≈ such that (A × A/≈, +, [0, 0]≈) is a group and the map

$$i: A \to G: a \mapsto [a, 0]_{\approx}$$

is a structure-preserving injection.

- (3) Using the construction in (2) and applying it to the natural numbers \mathbb{N} , argue that models of Zermelo set theory Z contain a structure that represents the integers \mathbb{Z} .
- (4) Discuss how this construction applied to Z can be used to argue that models of Zermelo set theory Z contain a structure that represents the rationals Q.
- (5) If $\mathbf{T} = (T, <)$ is a linear order, we call a pair (L, R) with $L, R \subseteq T$ a Dedekind cut if
 - (a) L is a proper initial segment of T, i.e., $L \neq T$ and if $\ell \in L$ and $t < \ell$, then $t \in L$;
 - (b) R is a proper final segment of T, i.e., $R \neq T$ and if $r \in R$ and r < t, then $t \in R$;
 - (c) R and L partition T, i.e., $R \cap L = \emptyset$ and $R \cup L = T$;
 - (d) L does not have a largest element.

We write $\text{Ded}(\mathbf{T})$ for the set of Dedekind cuts of \mathbf{T} and define an order on $\text{Ded}(\mathbf{T})$ by (L, R) < (L', R') if and only if $L \subsetneq L'$. Show that $(\text{Ded}(\mathbf{T}), <)$ is a linear order.

- (6) A linear order (L, <) is called *complete* if every subset bounded from above has a supremum. Show that for every linear order **T**, the order $(\text{Ded}(\mathbf{T}), <)$ is complete.
- (7) Show that the map $q \mapsto (\{x \in \mathbb{Q} : x < q\}, \{x \in \mathbb{Q} : x \ge q\})$ is an order-preserving injection from \mathbb{Q} into $\text{Ded}(\mathbb{Q})$ whose image lies dense in $\text{Ded}(\mathbb{Q})$ and argue that models of Zermelo set theory Z contain a structure that represents the real numbers. (Do you have an idea how to define an operation of addition on $\text{Ded}(\mathbb{Q})$ that extends the addition on \mathbb{Q} ?)