Group Interaction #2

MasterMath: Set Theory 2020/21: 1st Semester

K. P. Hart, Benedikt Löwe, Ezra Schoen, & Ned Wontner

In the second group interaction, we shall explore the nature of the recursion theorem in set theory. In class, we saw the following recursion theorem:

Recursion Theorem (on \mathbb{N}). Let $x_0 \in \mathbb{N}$ and $F : \mathbb{N} \to \mathbb{N}$. Then there is a unique function $G : \mathbb{N} \to \mathbb{N}$ such that

$$G(0) = x_0$$
 and
 $G(n+1) = F(G(n)).$

(1) Recapitulate the proof of the theorem and modify it to prove the following generalisation:

Recursion Theorem (from \mathbb{N} into a fixed set). Let Z be any set, $z_0 \in Z$, and $F : Z \to Z$. Then there is a unique function $G : \mathbb{N} \to Z$ such that

$$G(0) = z_0$$
 and
 $G(n+1) = F(G(n)).$

(2) Let us look at other variants of the recursion theorem and check that the original proof is easily modified to yield proofs of these version. E.g.,

Recursion Theorem (Fibonacci-style). Let $x_0, x_1 \in \mathbb{N}$ and $F : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. Then there is a unique function $G : \mathbb{N} \to \mathbb{N}$ such that

$$G(0) = x_0,$$

 $G(1) = x_1,$ and
 $G(n+2) = F(G(n), G(n+1))$

[Here, n + 2 abbreviates (n + 1) + 1.]

or

Recursion Theorem (nested recursions). Let $x_0, x_1 \in \mathbb{N}$ and $F_0, F_1 : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. Then there are unique functions $G : \mathbb{N} \to \mathbb{N}$ and $H : \mathbb{N} \to \mathbb{N}$ such that

$$G(0) = x_0,$$

 $H(0)x_1,$
 $G(n+1) = F_0(G(n), H(n+1)),$ and
 $H(n+1) = F_1(G(n), H(n)).$

In the nested recursion theorem, check why the proof would not work anymore if the final line of the recursion equations reads " $H(n+1) = F_1(G(n+1), H(n))$ ". Feel free to think of other, more complicated, versions of the Recursion Theorem that are proved with the same proof idea.

- (3) Go through the following alternative proof of the Recursion Theorem (using the terminology from class): Let C be the set of all relations $R \subseteq \mathbb{N} \times \mathbb{N}$ with the following properties:
 - (a) $(0, x_0) \in R$ and
 - (b) if g is a germ with dom(g) = n + 1 and $g \subseteq R$, then $(n + 1, F(g(n)) \in R$.

(As in the lecture, a germ is a function whose domain is a natural number and which satisfies the recursion equations on its domain.) Show that $G := \bigcap C$ is a function that satisfies the requirements of the Recursion Theorem (in particular, dom $(G) = \mathbb{N}$).