Group Interaction \#14

In this group interaction we take a look at the differences between the languages of type $\mathcal{L}_{\omega, \omega}, \mathcal{L}_{\omega_{1}, \omega}$, and $\mathcal{L}_{\omega_{1}, \omega_{1}}$.
To remind ourselves:

- type $\mathcal{L}_{\omega, \omega}$ covers first-order logic:
- countably many variables,
- predicates and function symbols of any desired arity
- constants
- the usual logical connectives: $\wedge, \vee, \rightarrow, \neg, \ldots$
- quantifiers \forall and \exists
- type $\mathcal{L}_{\omega_{1}, \omega}$ extends this by having
- \aleph_{1} many variables
- (countably) infinite conjunctions and disjunctions: $\bigwedge_{\eta<\alpha} \varphi_{\eta}$ and $\bigvee_{\eta<\alpha} \varphi_{\eta}$ (with $\alpha<\omega_{1}$)
- type $\mathcal{L}_{\omega_{1}, \omega_{1}}$ extends this even further by having
- (countably) infinite quantifiers $\exists_{\eta<\alpha} v_{\eta}$ and $\forall_{\eta<\alpha} v_{\eta}$ (with $\alpha<\omega_{1}$)

We look at the languages in the context of the real line \mathbb{R}.
In this case the language of type $\mathcal{L}_{\omega, \omega}$ has two constants: 0 and 1 , two functions: + and \times, and a predicate (relation symbol) $<$.
We add a constant c_{p} for every $p \in \mathbb{R}$. We add a unary function symbol f, whose interpretation will be a function from \mathbb{R} to itself, and a unary predicate A whose interpretation will be a subset of \mathbb{R}.
(1) Write down $\mathcal{L}_{\omega, \omega}$-sentences that express
a. (the interpretation of) f is continuous at p.
b. p is in the closure of (the interpretation of) A.
(2) Write down an $\mathcal{L}_{\omega, \omega}$-sentence that expresses that A is bounded from above and that it has a supremum.
(3) Let $\left\langle a_{n}: n \in \omega\right\rangle$ be a sequence in \mathbb{R}. Write down an $\mathcal{L}_{\omega_{1}, \omega}$-sentence that expresses that the sequence converges to π.
(4) Let X be an arbitrary countable subset of \mathbb{R}. Can you write down an $\mathcal{L}_{\omega, \omega}$-sentence that expresses that X is bounded from above and has a supremum? An $\mathcal{L}_{\omega_{1}, \omega}$-sentence? An $\mathcal{L}_{\omega_{1}, \omega_{1}}$-sentence? In each case explain why (not).
(5) The Archimedean property of \mathbb{R} states: if $x, y>0$ then there is a natural number n such that $n x>y$. Can you express this in an $\mathcal{L}_{\omega, \omega}$-sentence? In an $\mathcal{L}_{\omega_{1}, \omega}$-sentence? In an $\mathcal{L}_{\omega_{1}, \omega_{1}}$-sentence?
(6) Write down an $\mathcal{L}_{\omega_{1}, \omega_{1}}$-sentence that expresses that f is sequentially continuous at p.
(7) Write down an $\mathcal{L}_{\omega_{1}, \omega_{1}}$-sentence that expresses that every sequence that is monotone and bounded converges.
(8) Investigate which, if any, of the statements from Exercises (3), (6) and (7) can be expressed in a weaker language.

