Group Interaction #14

MasterMath: Set Theory

2020/21: 1st Semester

K. P. Hart, Benedikt Löwe, Ezra Schoen, & Ned Wontner

In this group interaction we take a look at the differences between the languages of type $\mathcal{L}_{\omega,\omega}$, $\mathcal{L}_{\omega_1,\omega}$, and $\mathcal{L}_{\omega_1,\omega_1}$.

To remind ourselves:

- type $\mathcal{L}_{\omega,\omega}$ covers first-order logic:
 - countably many variables,
 - predicates and function symbols of any desired arity
 - constants
 - the usual logical connectives: $\land,\,\lor,\,\rightarrow,\,\neg,\,\ldots$
 - quantifiers \forall and \exists
- type $\mathcal{L}_{\omega_1,\omega}$ extends this by having
 - \aleph_1 many variables
 - (countably) infinite conjunctions and disjunctions: $\bigwedge_{\eta < \alpha} \varphi_{\eta}$ and $\bigvee_{\eta < \alpha} \varphi_{\eta}$ (with $\alpha < \omega_1$)
- type $\mathcal{L}_{\omega_1,\omega_1}$ extends this even further by having
 - (countably) infinite quantifiers $\exists_{\eta < \alpha} v_{\eta}$ and $\forall_{\eta < \alpha} v_{\eta}$ (with $\alpha < \omega_1$)

We look at the languages in the context of the real line \mathbb{R} .

In this case the language of type $\mathcal{L}_{\omega,\omega}$ has two constants: 0 and 1, two functions: + and ×, and a predicate (relation symbol) <.

We add a constant c_p for every $p \in \mathbb{R}$. We add a unary function symbol f, whose interpretation will be a function from \mathbb{R} to itself, and a unary predicate A whose interpretation will be a subset of \mathbb{R} .

- (1) Write down $\mathcal{L}_{\omega,\omega}$ -sentences that express
 - a. (the interpretation of) f is continuous at p.
 - b. p is in the closure of (the interpretation of) A.
- (2) Write down an $\mathcal{L}_{\omega,\omega}$ -sentence that expresses that A is bounded from above and that it has a supremum.
- (3) Let $\langle a_n : n \in \omega \rangle$ be a sequence in \mathbb{R} . Write down an $\mathcal{L}_{\omega_1,\omega}$ -sentence that expresses that the sequence converges to π .
- (4) Let X be an arbitrary countable subset of \mathbb{R} . Can you write down an $\mathcal{L}_{\omega,\omega}$ -sentence that expresses that X is bounded from above and has a supremum? An $\mathcal{L}_{\omega_1,\omega}$ -sentence? An $\mathcal{L}_{\omega_1,\omega_1}$ -sentence? In each case explain why (not).
- (5) The Archimedean property of \mathbb{R} states: if x, y > 0 then there is a natural number n such that nx > y. Can you express this in an $\mathcal{L}_{\omega,\omega}$ -sentence? In an $\mathcal{L}_{\omega_1,\omega}$ -sentence? In an $\mathcal{L}_{\omega_1,\omega_1}$ -sentence?
- (6) Write down an $\mathcal{L}_{\omega_1,\omega_1}$ -sentence that expresses that f is sequentially continuous at p.
- (7) Write down an $\mathcal{L}_{\omega_1,\omega_1}$ -sentence that expresses that every sequence that is monotone and bounded converges.
- (8) Investigate which, if any, of the statements from Exercises (3), (6) and (7) can be expressed in a weaker language.