Homework Set \#7

2019/20: 1st Semester

Reminder. From Homework Set \#4 onwards, please hand in in collaboration teams of two students. These teams should work together, writing a joint solution to all of the exercises: both members of a team are fully responsible for all parts of the solution.

Deadline for Homework Set \#7: Monday, 28 October 2019, 2pm.
Questions (32) and (33) provide a proof of the Cantor-Schröder-Bernstein Theorem without using the Axiom of Choice, so please avoid the use of AC in your answers. The Cantor-Schröder-Bernstein Theorem states (using the notation introduced in class): if $X \preccurlyeq Y$ and $Y \preccurlyeq X$, then $X \sim Y$.
(30) If (P, \leq) is a partial order, we call $C \subseteq P$ a chain if (C, \leq) is a total order. If $X \subseteq P$, we say that X has an upper bound if there is some $p \in P$ such that for all $x \in X$, $x \leq p$. The partial order (P, \leq) is called chain-complete if every chain has an upper bound. We say that $m \in P$ is a maximal element if there is no $p \in P$ such that $m<p$. The statement "every non-empty chain-complete partial order has a maximal element" is called Zorn's Lemma. Show that on the basis of the axioms of ZF, Zorn's Lemma is equivalent to the Axiom of Choice.
(31) The following statement is known as Hessenberg's Theorem: for every $\alpha, \aleph_{\alpha} \times \aleph_{\alpha} \sim \aleph_{\alpha}$. Hessenberg's Theorem can be proved in ZF by constructing a bijection. In this question, you are going to give an alternative proof using Zorn's Lemma (cf. (30)).
Show the claim of Hessenberg's Theorem by induction on α : assume that it is true for all $\gamma<\alpha$ and consider the set $H:=\left\{f\right.$; there is an infinite subset Z of \aleph_{α} such that f is a bijection between $Z \times Z$ and $Z\}$. Order the set H by inclusion and show that (H, \subseteq) is a chain-complete partial order. Apply Zorn's Lemma to (H, \subseteq) to obtain a maximal element $m: Z_{m} \times Z_{m} \rightarrow Z_{m}$. Show that $Z_{m} \sim \aleph_{\alpha}$ (Hint. Use the induction hypothesis!) and derive the theorem from that.
(32) Prove the Knaster-Tarski Fixed Point Theorem: Let X be a set and $F: \wp(X) \rightarrow \wp(X)$ a \subseteq-monotone function, i.e., if $A \subseteq B$, then $F(A) \subseteq F(B)$. Then F has a fixed point, i.e., a set $A \subseteq X$ such that $A=F(A)$.
(33) Prove the Banach Decomposition Theorem: Let X and Y be sets and $f: X \rightarrow Y$ and $g: Y \rightarrow X$ arbitrary functions. Then there are disjoint decompositions $X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$ such that $f\left[X_{1}\right]=Y_{1}$ and $g\left[Y_{2}\right]=X_{2}$. Derive the Cantor-SchröderBernstein Theorem from the Banach Decomposition Theorem.
(Hint. Define $F(S):=X \backslash g[Y \backslash f[S]]$ and apply Knaster-Tarski.)

