Homework Set #7

Reminder. From Homework Set #4 onwards, please hand in in *collaboration teams* of two students. These teams should work together, writing a joint solution to all of the exercises: both members of a team are fully responsible for all parts of the solution.

Deadline for Homework Set #7: Monday, 28 October 2019, 2pm.

Questions (32) and (33) provide a proof of the Cantor-Schröder-Bernstein Theorem without using the Axiom of Choice, so please avoid the use of AC in your answers. The *Cantor-Schröder-Bernstein Theorem* states (using the notation introduced in class): if $X \leq Y$ and $Y \leq X$, then $X \sim Y$.

(30) If (P, \leq) is a partial order, we call $C \subseteq P$ a *chain* if (C, \leq) is a total order. If $X \subseteq P$, we say that X has an *upper bound* if there is some $p \in P$ such that for all $x \in X$, $x \leq p$. The partial order (P, \leq) is called *chain-complete* if every chain has an upper bound. We say that $m \in P$ is a *maximal element* if there is no $p \in P$ such that m < p.

The statement "every non-empty chain-complete partial order has a maximal element" is called *Zorn's Lemma*. Show that on the basis of the axioms of ZF, Zorn's Lemma is equivalent to the Axiom of Choice.

(31) The following statement is known as *Hessenberg's Theorem*: for every α , $\aleph_{\alpha} \times \aleph_{\alpha} \sim \aleph_{\alpha}$. Hessenberg's Theorem can be proved in ZF by constructing a bijection. In this question, you are going to give an alternative proof using Zorn's Lemma (cf. (30)).

Show the claim of Hessenberg's Theorem by induction on α : assume that it is true for all $\gamma < \alpha$ and consider the set $H := \{f ; \text{there is an infinite subset } Z \text{ of } \aleph_{\alpha} \text{ such that} f$ is a bijection between $Z \times Z$ and $Z\}$. Order the set H by inclusion and show that (H, \subseteq) is a chain-complete partial order. Apply Zorn's Lemma to (H, \subseteq) to obtain a maximal element $m : Z_m \times Z_m \to Z_m$. Show that $Z_m \sim \aleph_{\alpha}$ (*Hint.* Use the induction hypothesis!) and derive the theorem from that.

- (32) Prove the Knaster-Tarski Fixed Point Theorem: Let X be a set and $F : \wp(X) \to \wp(X)$ a \subseteq -monotone function, i.e., if $A \subseteq B$, then $F(A) \subseteq F(B)$. Then F has a fixed point, i.e., a set $A \subseteq X$ such that A = F(A).
- (33) Prove the Banach Decomposition Theorem: Let X and Y be sets and $f: X \to Y$ and $g: Y \to X$ arbitrary functions. Then there are disjoint decompositions $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$ such that $f[X_1] = Y_1$ and $g[Y_2] = X_2$. Derive the Cantor-Schröder-Bernstein Theorem from the Banach Decomposition Theorem.

(Hint. Define $F(S):=X\backslash g[Y\backslash f[S]]$ and apply Knaster-Tarski.)