Homework Set #9

MasterMath: Set Theory 2018/19: 1st Semester K. P. Hart, Benedikt Löwe, & Robert Paßmann

Deadline for Homework Set #9: Monday 12 November 2018, 2pm.

- (39) Let $f : \omega_1 \to \mathbb{R}$ be an injective map. For $q \in \mathbb{Q}$ put $A_q = \{\alpha : f(\alpha) < q\}$ and $B_q = \{\alpha : f(\alpha) > q\}$. Let $I = \{q : A_q \text{ contains a cub set}\}$ and $J = \{q : B_q \text{ contains a cub set}\}$.
 - a. Prove: if $p \in I$ and $q \in J$ then q < p.
 - b. Prove: $I \neq \mathbb{Q}$ and $J \neq \mathbb{Q}$.
 - c. Prove: $\sup J < \inf I$ (by convention: $\sup \emptyset = -\infty$ and $\inf \emptyset = \infty$).
 - d. Prove: there is a $q \in \mathbb{Q}$ such that both A_q and B_q are stationary.

(40) For every countable ordinal $\alpha \ge \omega$ let $f_{\alpha} : \alpha \to \omega$ be a bijection. For α and n define

 $U(\alpha, n) = \{\beta \in \omega_1 : \beta > \alpha \text{ and } f_\beta(\alpha) = n\}$

Prove:

- a. For every $n \in \omega$ the family $\{U(\alpha, n) : \alpha \ge \omega\}$ is pairwise disjoint.
- b. For every $\alpha \ge \omega$ there is an *n* such that $U(\alpha, n)$ is stationary in ω_1 .
- c. There is an n such that $\{\alpha \ge \omega : U(\alpha, n) \text{ is stationary}\}$ is uncountable.
- d. Every stationary subset of ω_1 can be decomposed into \aleph_1 many pairwise disjoint stationary sets. (Do not quote Solovay's theorem but give an alternative proof based on the considerations above.)
- (41) Let $\{F_{\alpha} : \alpha < \omega_1\}$ be a family of finite subsets of ω_1 . Prove that there are a finite set R and a stationary set S such that $F_{\alpha} \cap F_{\beta} = R$ whenever $\alpha, \beta \in S$ and $\alpha \neq \beta$. *Hint*: Use Fodor's Pressing-Down Lemma to find R and a stationary set T such that $F_{\alpha} \cap \alpha = R$ for $\alpha \in T$.
 - (A family like $\{F_{\alpha} : \alpha \in S\}$ is called a Δ -system with root R.)
- (42) As indicated in class identify $[\mathbb{R}]^2$ with $\{\langle x, y \rangle : x < y\}$. a. Enumerate \mathbb{Q} as $\langle q_n : n < \omega \rangle$. Define $F : [\mathbb{R}]^2 \to \omega$ by

$$F(\langle x, y \rangle) = \min\{n : x < q_n < y\}.$$

Show that there is no homogeneous triangle for F.

b. Let \prec be a well-order of \mathbb{R} and define $G : [\mathbb{R}]^2 \to 2$ by

$$G(\langle x, y \rangle) = \begin{cases} 0 & \text{if } y \prec x \\ 1 & \text{if } x \prec y \end{cases}$$

Show that there is no uncountable homogeneous set for G.