Homework Set #8

Deadline for Homework Set #8: Monday 5 November 2018, 2pm.

(35) Remember that a set A was called *infinite* if it is not finite. A set A was called *finite* if there is $n \in \mathbb{N}$ such that $n \sim A$.

A set D if called *Dedekind infinite* if there is some proper subset X of D such that $X \sim D$. Show the following claims without the use of the Axiom of Choice:

- a. Every Dedekind infinite set is infinite.
- b. Every infinite set A with a choice function for $\wp(A)$ is Dedekind infinite.
- c. The following are equivalent for a set D
 - (1) D is Dedekind infinite
 - (2) $\mathbb{N} \preccurlyeq D$
 - (3) $D \sim D \cup \{P\}$ where P is some set not in D
- d. A set A is infinite if and only if $\mathbb{N} \preccurlyeq \wp(\wp(A))$.

(36) Define an order \prec on the pairs of ordinals as follows:

$$\langle \alpha, \beta \rangle \prec \langle \gamma, \delta \rangle$$
 iff $\begin{cases} \alpha + \beta < \gamma + \delta & \text{or} \\ \alpha + \beta = \gamma + \delta & \text{and } \alpha < \gamma \end{cases}$

Prove, by induction, that for all cardinals infinite cardinals κ

a. $\kappa \times \kappa = \{ \langle \alpha, \beta \rangle : \langle \alpha, \beta \rangle \prec \langle 0, \kappa \rangle \}$

- b. The relation \prec is a well-order of $\kappa \times \kappa$ and its order type is equal to κ .
- (37) Let κ be a regular uncountable cardinal.
 - a. Let $n \in \mathbb{N}$ and let $f : \kappa^n \to \kappa$ be a function. Prove that $C_f = \{\alpha < \kappa : f[\alpha^n] \subseteq \alpha\}$ is closed and unbounded in κ .
 - b. Let $\lambda < \kappa$ be a cardinal and for each $\gamma < \lambda$ let $f_{\gamma} : \kappa^{n_{\gamma}} \to \kappa$ be a function, where $n_{\gamma} \in \mathbb{N}$. Prove that the set

$$C = \{ \alpha < \kappa : (\forall \gamma < \lambda) (f_{\gamma}[\alpha^{n_{\gamma}}] \subseteq \alpha) \}$$

is closed and unbounded in κ .

- c. Let * be a binary operation on κ such that $\langle \kappa, * \rangle$ is a group. Prove that the set of $\alpha < \kappa$ for which $\langle \alpha, * \rangle$ is a subgroup is closed and unbounded in κ .
- (38) Let κ be regular and uncountable and let $f : \kappa \to [\kappa]^{\langle \aleph_0}$ be a function (so $f(\alpha)$ is a finite subset of κ for all α).
 - a. Prove that $\{\alpha < \kappa : (\forall \beta < \alpha) (f(\beta) \subseteq \alpha)\}$ is closed and unbounded.
 - b. Prove that there is a $\gamma \in \kappa$ such that $\{\alpha < \kappa : \gamma = \max(f(\alpha) \cap \alpha)\}$ is stationary.
 - c. Prove that there is a stationary subset F of κ such that $\alpha \notin f(\beta)$ whenever α and β are distinct elements of F. (F is called a *free set* for f.)