Homework Set #6

Deadline for Homework Set #6: Monday, 22 October 2018, 2pm.

- (25) Prove the following properties of ordinal addition and multiplication:
 - (a) For all α and $\gamma \leq \gamma'$, we have that $\gamma + \alpha \leq \gamma' + \alpha$.
 - (b) For all α and $\gamma \leq \gamma'$, we have that $\gamma \cdot \alpha \leq \gamma' \cdot \alpha$.
 - (c) For all α , β , and γ , we have that $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$.
 - (d) If $\alpha \leq \beta$, then there is a unique pair (μ, ϱ) such that $\beta = \alpha \cdot \mu + \varrho$ and $\varrho < \alpha$.
- (26) Prove the following Synthetic Addition Theorem: For any ordinals α and β , we have that $(\alpha + \beta, \in) \cong (\alpha, \in) \oplus (\beta, \in)$.
- (27) Let γ be an ordinal. A finite sequence $(\gamma_0, ..., \gamma_n)$ with $\gamma_0 \ge \gamma_1 \ge ... \ge \gamma_n$ is called a *Cantor Normal Form of* γ if

$$\gamma = \omega^{\gamma_0} + \ldots + \omega^{\gamma_n}.$$

Prove that every ordinal $\gamma > 0$ has a unique Cantor Normal Form.

(28) Let X be a set of pairwise disjoint non-empty sets, i.e., if $x, x' \in X$, then $x \neq \emptyset \neq x'$ and $x \cap x' = \emptyset$. We say that C is a *choice set for* X if for each $x \in X$, the set $x \cap C$ has exactly one element. The Axiom of Choice Sets says that every set of pairwise disjoint, non-empty sets has a choice set. [Side remark: Why can't you get rid of the requirement that the sets in X are pairwise disjoint?]

Show that (on the basis of the axioms of ZF), the Axiom of Choice and the Axiom of Choice Sets are equivalent.

(29) Let $\mathbf{P} := (P, \leq)$ be a partial order. We say that $C \subseteq P$ is called a *chain in* \mathbf{P} if the restricted order $(C, \leq \cap (C \times C))$ is a linear order. If $Z \subseteq P$ and $b \in P$, we say that b is an *upper bound of* Z if for all $z \in Z$, we have $z \leq b$. We say that m is a *maximal element of* \mathbf{P} if for all $p \in P$, it is not the case that m < p. (Note that this does not necessarily imply that m is the greatest element of \mathbf{P} .) We say that \mathbf{P} is *chain complete* if every chain in \mathbf{P} has an upper bound. The following statement is known as Zorn's Lemma (ZL): every chain complete partial order has a maximal element.

Show that (on the basis of the axioms of ZF), the Axiom of Choice and Zorn's Lemma are equivalent.

Main ideas for both directions. For the direction "AC \Rightarrow ZL", assume that $\mathbf{P} = (P, \leq)$ does not have a maximal element, i.e., for each $p \in P$, the set $\{q \in P; p < q\}$ is non-empty, and use this assumption together with a choice function for $\wp(P)$ to get an injection from $\aleph(P)$ into P; for the direction "ZL \Rightarrow AC", consider the set of partial choice functions for X, i.e., functions f with $f(x) \in x$ and dom $(f) \subseteq X$, ordered by inclusion and show that maximal elements in this partial order are choice functions.