Homework Set #5

Deadline for Homework Set #5: Monday, 15 October 2018, 2pm.

- (20) A property P of sets is said to be *closed under binary unions* if whenever x and y have property P, then the set $x \cup y$ has property P. Consider the properties "x is a transitive set" and " (x, \in) is transitive". Does one of them imply the other? (Give proofs or counterexamples.) Which one is closed under binary unions?
- (21) If (X, <) is a linear order and $I \subseteq X$, we called I an *initial segment* if for all $x, y \in X$, if x < y and $y \in I$, then $x \in I$. An initial segment I was called *proper* if $I \neq X$. As before, for $x \in X$, $IS(x) := \{y \in X ; y < x\}$.
 - (a) Show that for arbitrary linear orders, IS(x) is a proper initial segment.
 - (b) Show that if (X, <) is a wellorder, then I is a proper initial segment if and only if there is some $x \in X$ such that I = IS(x).
- (22) Prove the *Rigidity Theorem for Wellorders*: Suppose (X, <) and (Y, <) are wellorders, I and J are initial segments of (X, <) and $f: I \to Y$ and $g: J \to Y$ are isomorphisms. Show that I = J and f = g.
- (23) Prove the following claim we used in class: suppose that (X, <) is a wellorder and that f is a function assigning an ordinal f(x) to every element $x \in X$ such that $(f(x), \in) \cong (IS(x), <)$. Show that f is order-preserving and that the range of f is a transitive set of ordinals.
- (24) In the proof of Hartogs' Theorem, we considered a set X and the sets

 $A_X := \{ (W, R) ; W \subseteq X \text{ and } (W, R) \text{ is a wellorder} \} \text{ and } B_X := \{ \alpha ; \exists (W, R) \in A \text{ such that } (W, R) \cong (\alpha, \epsilon) \}.$

We claimed that if X is infinite, then B_X is a transitive set of ordinals without largest elements. Prove that claim. Also, describe B_X in the case that X is finite.