Homework Set #3

Deadline for Homework Set #3: Monday, 1 October 2018, 2pm.

- (10) A linear order (L, \leq) is called *complete* if every subset bounded from above has a supremum. It is called *dense* if for any x < y, there is some z such that x < z < y. In class, we have seen the construction of the linear order of *Dedekind cuts* $\mathcal{D}(L, \leq)$ of a linear order. Show that if (L, \leq) is complete, dense, and has neither largest nor smallest element, then $\mathcal{D}(L, \leq)$ is isomorphic to (L, \leq) .
- (11) Consider the linear order (\mathbb{Q}, \leq) of rational numbers. Show that for any rational numbers p < q and any Dedekind cut (I, F) there are p', q' such that p < p' < q' < q and either $p' \in F$ or $q' \in I$.
- (12) Suppose that $\sigma : \mathbb{N} \to \mathcal{D}(\mathbb{Q}, \leq)$ is a function. Use (11) to construct sequences $(p_i; i \in \mathbb{N})$ and $(q_i; i \in \mathbb{N})$ such that $p_i < p_{i+1} < q_i$ and for $\sigma(i) = (I, F)$ we have either $p_{i+1} \in F$ or $q_{i+1} \in I$. Use these sequences to show that σ is not a surjection.
- (13) Let $(X, \leq, 0, S)$ be a linear order with minimal element 0 and a unary, increasing function $S: X \to X$, i.e., for all $x \in X$, we have x < S(x).
 - (a) A subset $Z \subseteq X$ is called *S*-inductive if $0 \in Z$ and for all $x \in X$, if $x \in Z$, then $S(x) \in Z$.
 - (b) A subset $Z \subseteq X$ is called *order inductive* if for all $x \in X$, if $\{z \in X ; z < x\} \subseteq Z$, then $x \in Z$.
 - (c) We say that $(X, \leq, 0, S)$ satisfies the principle of complete induction if for every S-inductive set Z, we have that Z = X.
 - (d) We say that $(X, \leq, 0, S)$ satisfies the principle of order induction if for every order inductive set Z, we have that Z = X.

Show that if $(X, \leq, 0, S)$ satisfies the principle of complete induction, it satisfies the principle of order induction, and give conditions on S under which the converse holds. [*Note.* We have seen in class that the converse does not always hold, since the order $(\mathbb{N}, \leq) \oplus (\mathbb{N}, \leq)$ satisfies the principle of order induction, but not the principle of complete induction.]

(14) Let (W, <) be a wellorder. For $w \in W$, we let $\mathrm{IS}_w := \{x \in W ; x < w\}$. Let Ψ be a functional and total formula in two free variables, i.e., if $\Psi(x, y)$ and $\Psi(x, y')$, then y = y' and for all x there is an y such that $\Psi(x, y)$. Show the 4th Version of the Recursion Theorem:

There is a unique function g with dom(g) = W such that for all $w \in W$, we have

$$g(w) = z$$
 if and only if $\Psi(g | \mathrm{IS}_w, z)$