Homework Set #14

MasterMath: Set Theory 2018/19: 1st Semester K. P. Hart, Benedikt Löwe, & Robert Paßmann

Deadline for Homework Set #14: Monday 17 December 2018, 2pm.

(59) Define a relation Q on \mathbb{R} by

$$x Q y$$
 if $x - y \in \mathbb{Q}$

- a. Verify that Q is an equivalence relation.
- b. Construct a perfect set P in \mathbb{R} such that $x \not Q y$ whenever x and y are distinct members of P. *Hint*: Enumerate $\mathbb{Q} \setminus \{0\}$ as $\langle q_n : n \in \omega \rangle$. Build a family of closed intervals I_s , indexed by the tree $2^{<\omega}$ of finite sequences of 0s and 1s such that 1) $I_{\langle \rangle} = [0, 1], 2$ if $s \subset t$ then $I_s \supset I_t, 3$ for each n the family $\{I_s : s \in 2^n\}$ is pairwise disjoint, and 4) for each n: if $s, t \in 2^n$ and $s \neq t$ then $(I_s - q_n) \cap I_t = \emptyset$.
- c. Apply the Axiom of Choice to find a subset V of $[0, \frac{1}{2}]$ that intersects each Q-equivalence class in exactly one point.
- d. Prove that this V is not Lebesgue-measurable. *Hint*: $\{V + q : q \in \mathbb{Q}\}$ is a pairwise disjoint family of subsets of \mathbb{R} that covers \mathbb{R} ; also note that $\bigcup_{n=2}^{\infty} (V + \frac{1}{n}) \subseteq [0, 1]$. These facts imply contradicting information about the possible measure of V.
- e. Prove that the set V does not have the Baire property. *Hint*: Note that V cannot be meager. Assume V does have the Baire property and show that there is an interval (a, b) such that $(a, b) \setminus V$ is meager. Deduce that $(a, b) \cap (V+q)$ is meager for all $q \neq 0$ and hence $(a-q, b-q) \cap V$ is meager for all $q \neq 0$. Deduce that V is meager after all.
- f. Show that V may be chosen so that it does have a perfect subset.
- (60) Prove that there is a subset B of \mathbb{R} such that neither B nor $\mathbb{R} \setminus B$ has a perfect subset. *Hint*: Enumerate the family of all perfect subsets of \mathbb{R} as $\langle P_{\alpha} : \alpha < \mathfrak{c} \rangle$, where $\mathfrak{c} = |\mathbb{R}|$ (why is this possible?). By recursion construct injective sequences $\langle x_{\alpha} : \alpha < \mathfrak{c} \rangle$ and $\langle y_{\alpha} : \alpha < \mathfrak{c} \rangle$ with disjoint ranges such that $x_{\alpha}, y_{\alpha} \in P_{\alpha}$ for all α .