Homework Set #12

MasterMath: Set Theory 2018/19: 1st Semester K. P. Hart, Benedikt Löwe, & Robert Paßmann

Deadline for Homework Set #12: Monday 03 December 2018, 2pm.

(51) Let Z be the subset of \mathcal{N} defined by

 $z \in Z$ if and only if $\lim_{n \to \infty} z(n) \cdot 2^{-n} = 0$

Show that Z is a Borel subset of \mathcal{N} . *Hint*: Z is in fact a Π_3^0 -set.

(52) The number of Borel and analytic sets.

- a. Prove that the family of open sets in \mathbb{R} has cardinality 2^{\aleph_0} .
- b. Prove that for every $\alpha < \omega_1$ the family of Σ^0_{α} -sets in \mathbb{R} has cardinality 2^{\aleph_0} .
- c. Prove that the σ -algebra of Borel sets in \mathbb{R} has cardinality 2^{\aleph_0} .
- d. Prove that the family of analytic subsets of \mathbb{R} has cardinality 2^{\aleph_0} .

(53) Other universal sets.

- a. Let $\alpha < \omega_1$. Prove: if $U \subseteq \mathcal{N}^2$ is a universal Σ^0_{α} -set then $\mathcal{N}^2 \setminus U$ is a universal Π^0_{α} -set.
- b. Let $F \subseteq \mathcal{N}^3$ be a universal closed set, that is: F is closed and for every closed subset G of \mathcal{N}^2 there is a $z \in \mathcal{N}$ such that $G = \{\langle x, y \rangle : \langle x, y, z \rangle \in F\}$. Let $A = \{\langle x, z \rangle : (\exists y) (\langle x, y, z \rangle \in F)\}$. Prove that A is a universal analytic set.
- c. Prove that there is an analytic subset of \mathcal{N} whose complement is not analytic.