Homework Set #11

MasterMath: Set Theory 2018/19: 1st Semester K. P. Hart, Benedikt Löwe, & Robert Paßmann

Deadline for Homework Set #11: Monday 26 November 2018, 2pm.

- (46) On the 'smallest σ -algebra that contains \mathcal{X} '. Let S be a set and \mathcal{X} a subfamily of $\mathcal{P}(X)$.
 - a. Show that $\mathcal{P}(X)$ and the family $\{\emptyset, S\}$ are σ -algebras on S.
 - b. Prove: if \mathfrak{S} is a family of σ -algebras on S then $\bigcap \mathfrak{S}$ is a σ -algebra on S.
 - c. There is a σ -algebra \mathcal{S} such that $\mathcal{X} \subseteq \mathcal{S}$ and whenever \mathcal{B} is a σ -algebra with $\mathcal{X} \subseteq \mathcal{B}$ then $\mathcal{S} \subseteq \mathcal{B}$.
 - d. Let $\mathcal{X} = \{\{x\} : x \in S\}$; describe the smallest σ -algebra on S that contains \mathcal{X} .
 - e. Describe the Borel σ -algebra of the metric space \mathbb{Q} .

(47) Consider the following σ -algebras on \mathbb{R} .

- \mathcal{B}_1 is the σ -algebra of Borel sets
- \mathcal{B}_2 is the smallest σ -algebra that contains all open intervals with rational end points

Prove that these σ -algebras are identical.

- (48) Application of the Baire Category Theorem. Prove that \mathbb{Q} is an F_{σ} -set but not a G_{δ} -set in \mathbb{R} .
- (49) The space \mathcal{N} .
 - a. Prove that d, as defined in class:

$$d(x,y) = \begin{cases} 0 & \text{if } x = y\\ 2^{-n} & \text{if } x \neq y \text{ and } n = \min\{k : x_k \neq y_k\} \end{cases}$$

is a metric on \mathcal{N} .

(50) Let $\langle q_n : n \in \omega \rangle$ be a one-to-one enumeration of \mathbb{Q} . Define $f : \mathbb{R} \to \mathbb{R} \setminus \mathbb{Q}$ as follows

$$f(q_n) = q_{2n} + \sqrt{2}$$

$$f(q_n + \sqrt{2}) = q_{2n+1} + \sqrt{2}$$

$$f(x) = x \text{ in all other cases}$$

- a. Prove that f is a bijection.
- b. Prove for all subsets B of \mathbb{R} that B is a Borel set in \mathbb{R} if and only if f[B] is a Borel set in $\mathbb{R} \setminus \mathbb{Q}$. *Hint*: Show that f[O] is Borel when O is open in \mathbb{R} and that $f^{-1}[O]$ is Borel when O is open in $\mathbb{R} \setminus \mathbb{Q}$.