Homework Set #11

Deadline for Homework Set #11: Monday 26 November 2018, 2pm.

46) On the ‘smallest σ-algebra that contains \mathcal{X}’. Let S be a set and \mathcal{X} a subfamily of $\mathcal{P}(S)$.
 a. Show that $\mathcal{P}(S)$ and the family $\{\emptyset, S\}$ are σ-algebras on S.
 b. Prove: if \mathcal{G} is a family of σ-algebras on S then $\bigcap \mathcal{G}$ is a σ-algebra on S.
 c. There is a σ-algebra \mathcal{S} such that $\mathcal{X} \subseteq \mathcal{S}$ and whenever \mathcal{B} is a σ-algebra with $\mathcal{X} \subseteq \mathcal{B}$ then $\mathcal{S} \subseteq \mathcal{B}$.
 d. Let $\mathcal{X} = \{\{x\} : x \in S\}$; describe the smallest σ-algebra on S that contains \mathcal{X}.
 e. Describe the Borel σ-algebra of the metric space \mathbb{Q}.

47) Consider the following σ-algebras on \mathbb{R}.
 - \mathcal{B}_1 is the σ-algebra of Borel sets
 - \mathcal{B}_2 is the smallest σ-algebra that contains all open intervals with rational end points

 Prove that these σ-algebras are identical.

48) Application of the Baire Category Theorem.
 Prove that \mathbb{Q} is an F_σ-set but not a G_δ-set in \mathbb{R}.

49) The space \mathcal{N}.
 a. Prove that d, as defined in class:

 \[d(x, y) = \begin{cases}
 0 & \text{if } x = y \\
 2^{-n} & \text{if } x \neq y \text{ and } n = \min\{k : x_k \neq y_k\}
 \end{cases} \]

 is a metric on \mathcal{N}.

50) Let $\langle q_n : n \in \omega \rangle$ be a one-to-one enumeration of \mathbb{Q}. Define $f : \mathbb{R} \to \mathbb{R} \setminus \mathbb{Q}$ as follows

 \[
 f(q_n) = q_{2n} + \sqrt{2} \\
 f(q_n + \sqrt{2}) = q_{2n+1} + \sqrt{2} \\
 f(x) = x \text{ in all other cases}
 \]

 a. Prove that f is a bijection.
 b. Prove for all subsets B of \mathbb{R} that B is a Borel set in \mathbb{R} if and only if $f[B]$ is a Borel set in $\mathbb{R} \setminus \mathbb{Q}$. \textit{Hint:} Show that $f[O]$ is Borel when O is open in \mathbb{R} and that $f^{-1}[O]$ is Borel when O is open in $\mathbb{R} \setminus \mathbb{Q}$.