Homework Set #10

MasterMath: Set Theory 2018/19: 1st Semester K. P. Hart, Benedikt Löwe, & Robert Paßmann

Deadline for Homework Set #10: Monday 19 November 2018, 2pm.

(43) Two applications of Ramsey's theorem.

- a. Let $\langle L, < \rangle$ be an infinite linearly ordered set. Prove that L has an infinite subset X that is well-ordered by < or an infinite subset Y that is well-ordered by >.
- b. Let $\langle P, < \rangle$ be an infinite partially ordered set. Prove that P has an infinite subset C that is linearly ordered by < or an infinite subset U that is unordered by <, which means that if x and y in U are distinct then neither x < y nor y < x.
- (44) An application of the theorem of Erdős, Dushnik and Miller. Let κ be an infinite cardinal number and let \prec be some well-order of κ . Prove that there is a subset A of κ of cardinality κ and such that for all $\alpha, \beta \in A$ we have

$$\alpha \in \beta$$
 if and only if $\alpha \prec \beta$.

(45) An ordinal strengthening of the Erdős-Dushnik-Miller theorem. The statement

$$\omega_1 \to (\omega_1, \omega + 1)^2$$

means: if $[\omega_1]^2 = A \cup B$ then there is subset H of ω_1 of cardinality \aleph_1 such that $[H]^2 \subseteq A$ or there is a subset I of ω_1 of order-type $\omega + 1$ such that $[I]^2 \subseteq B$.

We assume there is no *B*-homogeneous set of order-type $\omega + 1$.

- a. Prove that for every limit ordinal α there is a maximal subset K_{α} of α such that $[K_{\alpha} \cup \{\alpha\}]^2 \subseteq B$.
- b. Deduce that every K_{α} is finite.
- c. Apply the Pressing-Down Lemma to find a stationary set S and one finite set K such that $K_{\alpha} = K$ for all $\alpha \in S$.
- d. Prove that $[S]^2 \subseteq A$.