HOMEWORK 5

SET THEORY

- ▶ 1 (Jech: 2.13). An ordinal γ is called a gamma number (also known as additively indecomposable ordinal or principal number of addition) if for all $\alpha, \beta < \gamma$, we have $\alpha + \beta < \gamma$. Show that for $\gamma > 0$, the following are equivalent:
 - (i) γ is a gamma number,
 - (ii) for all $\alpha < \gamma$, we have $\alpha + \gamma = \gamma$,
 - (iii) there is some ξ such that $\gamma = \omega^{\xi}$.
- ▶ 2. Let α and β be ordinals and let $\alpha = \omega^{\alpha_1} \cdot k_1 + \dots + \omega^{\alpha_n} \cdot k_n$ and $\beta = \omega^{\beta_1} \cdot \ell_1 + \dots + \omega^{\beta_m} \cdot \ell_m$ be the Cantor normal forms of α and β , respectively. Merge the two sequences to a finite descending sequence of ordinals $\gamma_1 > \dots > \gamma_k$ such that $\{\gamma_i : 1 \le i \le k\} = \{\alpha_i : 1 \le i \le n\} \cup \{\beta_i : 1 \le i \le m\}$,

$$\alpha = \omega^{\gamma_1} \cdot p_1 + \dots + \omega^{\gamma_k} \cdot p_k \text{ and}$$
$$\beta = \omega^{\gamma_1} \cdot q_1 + \dots + \omega^{\gamma_k} \cdot q_k,$$

where

$$p_i := \left\{ \begin{array}{ll} k_j & \text{if } \gamma_i = \alpha_j, \\ 0 & \text{if } \gamma_i \notin \{\alpha_1, \dots, \alpha_n\}, \end{array} \right. q_i := \left\{ \begin{array}{ll} \ell_j & \text{if } \gamma_i = \beta_j, \text{ and} \\ 0 & \text{if } \gamma_i \notin \{\beta_1, \dots, \beta_m\}. \end{array} \right.$$

Define

$$\alpha \# \beta := \omega^{\gamma_1} \cdot (p_1 + q_1) + \dots + \omega^{\gamma_k} \cdot (p_k + q_k).$$

The operation is called the *Hessenberg addition* or *natural addition*. Show that the operation # is commutative and that $\alpha \# \beta \ge \max(\alpha + \beta, \beta + \alpha)$. Find examples for α and β such that

- (a) $\alpha \# \beta = \alpha + \beta \neq \beta + \alpha$,
- (b) $\alpha \# \beta > \max(\alpha + \beta, \beta + \alpha)$.
- ▶ 3. We define the following relation for ordinal numbers α, β, α' and β' :

$$(\alpha, \beta) <^* (\alpha', \beta') : \iff \max(\alpha, \beta) < \max(\alpha', \beta') \text{ or}$$

$$(\max(\alpha, \beta) = \max(\alpha', \beta') \text{ and } \alpha < \alpha') \text{ or}$$

$$(\max(\alpha, \beta) = \max(\alpha', \beta') \text{ and } \alpha = \alpha' \text{ and } \beta < \beta').$$

(a) Show that for every ordinal ξ the structure $(\xi \times \xi, <^*)$ is a well-order.

We denote by $g(\xi)$ the unique ordinal isomorphic to $(\xi \times \xi, <^*)$ and by $G_{\xi} : \xi \times \xi \to g(\xi)$ the unique isomorphism between ξ and $g(\xi)$. Show that for every $\xi < \eta$ and $\alpha, \beta \in \xi$ we have

$$G_{\mathcal{E}}(\alpha,\beta) = G_n(\alpha,\beta).$$

Therefore we can define the following class function:

$$G: (\alpha, \beta) \mapsto G_{\max(\alpha, \beta) + 1}(\alpha, \beta).$$

- (b) Show that the class function G maps pairs of ordinals to ordinals and satisfies the conditions for (i) injectivity, (ii) order preservation, and (iii) surjectivity, i.e., (i) for all ordinals $\alpha, \beta, \alpha', \beta'$, if $G((\alpha, \beta)) = G((\alpha', \beta'))$, then $(\alpha, \beta) = (\alpha', \beta')$; (ii) for all ordinals $\alpha, \beta, \alpha', \beta'$, we have $G((\alpha, \beta)) < G((\alpha', \beta'))$ if and only if $(\alpha, \beta) <^* (\alpha', \beta')$; and (iii) every ordinal is $G((\alpha, \beta))$ for some α and β .
- (c) Show by induction that for every infinite cardinal κ we have $g(\kappa) = \kappa$. [Hint. First show that if the claim holds for infinite cardinals $\lambda < \kappa$, then for every infinite ordinal $\alpha < \kappa$, we have $|\alpha \times \alpha| = |\alpha|$.]
- (d) Finally, prove Hessenberg's Theorem: for every infinite cardinal κ , we have $|\kappa \times \kappa| = \kappa$.