HOMEWORK 14

SET THEORY

▶ 1. Remember the *beth function* defined by transfinite recursion as follows:

$$\exists_0 = \omega, \exists_{\alpha+1} = 2^{\exists_{\alpha}}, \exists_{\delta} = \bigcup_{\alpha < \delta} \exists_{\alpha} \text{ for limit ordinals } \delta.$$

A cardinal λ is called a *beth fixed point* if $\beth_{\lambda} = \lambda$.

- (1) Show that a cardinal κ is a strong limit if and only if there is a limit ordinal δ such that $\beth_{\delta} = \kappa$.
- (2) Let κ be a regular cardinal. Show that there is a beth fixed point λ such that $cf(\lambda) = \kappa$.
- ▶ 2. A formula Φ is called *serial* if for all x there is a y such that $\Phi(x, y)$. If Φ is a serial formula, the following formula is called the Axiom of Collection for Φ :

$$\forall X \exists Y \forall x \in X \exists y \in Y \varphi(x, y).$$

If the Axiom of Collection for Φ holds, we say that Y collects X with respect to Φ . If M is a set, we say that M is closed under Collection if for every serial formula Φ and every $X \in M$, then there is a $Y \in M$ that collects X with respect to Φ .

- (1) Show that for every serial formula Φ , the other axioms of set theory imply the Axiom of Collection for Φ . (Mention explicitly in the proof which axioms you used.)
- (2) Show that for each infinite cardinal κ , \mathbf{H}_{κ} is closed under Collection.
- ▶ 3. Next week we will prove that if κ is an inaccessible cardinal, then $\mathbf{V}_{\kappa} = \mathbf{H}_{\kappa}$. Check whether the two converses hold or not, i.e.,
 - (1) "if $\mathbf{V}_{\kappa} = \mathbf{H}_{\kappa}$, then κ is regular" and
 - (2) "if $\mathbf{V}_{\kappa} = \mathbf{H}_{\kappa}$, then κ is a strong limit cardinal".

For each of the statements, either give a proof or a counterexample.

▶ 4. Let κ be a strong limit cardinal such that for all $\lambda < \kappa$, the partition relation $\kappa \to (\lambda)_2^2$ holds. Show that κ is inaccessible.

Additional questions; not part of the homework:

- ▶ 5. Is it necessary to assume "strong limit" in Question 4 to prove inaccessibility?
- ▶ 6. In class, we showed that for limit ordinals λ , \mathbf{V}_{λ} is closed under Separation by showing that for each $x, p_1, ..., p_n \in \mathbf{V}_{\lambda}$ and each formula φ , the set $S_{\varphi}(x, p_1, ..., p_n) \in \mathbf{V}_{\lambda}$. We mentioned that it is not obvious that this implies that the Axiom of Separation holds in \mathbf{V}_{λ} because $S_{\varphi}(x, p_1, ..., p_n)$ may not be the result of separating by φ from x inside \mathbf{V}_{λ} . Show that in spite of this issue, the proved closure property of \mathbf{V}_{λ} is sufficient to prove that the Axiom of Separation holds in \mathbf{V}_{λ} .